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Q&AQuestions

• can we apply L-BFGS to non-smooth function?
• can we combine L-BFGS with Randomized Coordinate Descent?
• is it faster than ISTA/FISTA?
• is it faster than L-BFGS with ISTA/FISTA?
• what is the complexity for each RCD step?
• how many RCD steps should we run per iteration?
• how many RCD steps do we need to achieve ✏-accuracy?
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ObjectiveProblem of Interest

• consider minimizing the following composite function:

min

x2Rn
F (x ) ⌘ f (x ) + g(x )

• for example, sparse optimization
I

Classification – Sparse Logistic Regression (SLR)

f (w) =
1

N

NX

i=1

log(1 + exp(-yi · wTxi )), g(w) = �||w ||
1

, w 2 Rp

training set {(xi , yi )}Ni=1

2 (Rp ⇥ {-1, 1})
I

Graphical model – Sparse Inverse Covariance Selection (SICS)

f (X ) = - log detX + tr(SX ), g(X ) = �||X ||
1

, X 2 Sp++

low rank sample covariance matrix S 2 Sp+ – more observations than number of

random variables.

• and many others, e.g., elastic net, group lasso, matrix completion (with nuclear
norm), dictionary learning (with hierarchical norm), etc.
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For k = 1,2,…: 
!
 Construct local approximation 
  
!
!
!
!
  For j = 1,2,…: 
!
   Minimize local approximation 
!
 Update variables

Outer loop

Inner loop

others

Q(H ,u , v) := f (v) + hrf (v),u - vi + 1
2
h(u - v),H (u - v)i + g(u).
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!
what if the local             

approximation is bad? 



For k = 1,2,…: 
!
 Construct local approximation 
  
 While direction is not good: 
!
  Update local approximation  
!
  For j = 1,2,…: 
!
   Minimize local approximation 
!
 Update variables

Outer loop

others

Q(H ,u , v) := f (v) + hrf (v),u - vi + 1
2
h(u - v),H (u - v)i + g(u).

Xiaocheng Tang (Lehigh U.) San Diego 2014 2 / 43

Check Sufficient  
Decrease

Inner loop



For k = 1,2,…: 
!
 Construct local approximation 
  
 While direction is not good: 
!
  Update local approximation  
!
   
!
    
!
 Update variables

Outer loop

others

Q(H ,u , v) := f (v) + hrf (v),u - vi + 1
2
h(u - v),H (u - v)i + g(u).

Xiaocheng Tang (Lehigh U.) San Diego 2014 2 / 43

Check Sufficient  
Decrease

Inner loop

Inexact Solver

For j = 1,2,…:  
!
 Minimize local approximation



For k = 1,2,…: 
!
 Construct local approximation 
  
 While direction is not good: 
!
  Update local approximation  
!
   
!
    
!
 Update variables

Outer loop

others

Q(H ,u , v) := f (v) + hrf (v),u - vi + 1
2
h(u - v),H (u - v)i + g(u).

Xiaocheng Tang (Lehigh U.) San Diego 2014 2 / 43

Check Sufficient  
Decrease

Inner loop

Inexact Solver

For j = 1,2,…:  
!
 Minimize local approximation

until when?
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Check Sufficient  
Decrease

Inner loop

Inexact Solver

For j = 1,2,…,l(k):  
!
 Minimize local approximation

What is l(k)?



BasicsNotations
• Objective F (x ) and Local approximation Q(H , v ,u)

F (x ) = f (x ) + g(x ),

Q(H , v ,u) = f (u) + hrf (u), v - ui + 1
2
hv - u ,H (v - u)i + g(v).

• Exact minimizer pH (u) and Inexact minimizer pH ,�(u)

pH (u) = arg min
v

Q(H , v ,u),

Q(H , pH ,�(u),u)  Q(H ,u ,u) = F (u),
and Q(H , pH ,�(u),u)  Q(H , pH (u),u) + �

• Sufficient decrease condition

x k+1 := pHk (x
k ) or pHk ,�k (x

k )

F (x k+1) - F (x k )  ⇢(Q(Hk , x k+1, x k ) - F (x k ))

• Hessian or Hessian approximation G (and H )

H  1
µ
I + G
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For k = 1,2,…: 
!
 Construct local approximation 
  
 While direction is not good: 
!
  Update local approximation  
!
   
!
    
!
 Update variables

Outer loop

Check Sufficient  
Decrease

Inner loop For j = 1,2,…,l(k):  
!
 Minimize local approximation

others

Q(H, u,v) := f (v) + hrf (v),u - vi + 1
2
h(u - v),H (u - v)i + g(u).

Q(Gk ,rfk , ·, xk )

µk  µk/2

pHk ,�k (xk )

xk+1  pHk ,�k (xk )
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Assumptions
Assumptions
• Existence The set of optimal solutions, X ⇤, is nonempty; x ⇤ is any element of X ⇤.
• Bounded Level Set The effective domain of F is defined as

dom(F ) := {x 2 Rn : F (x ) < 1}, and the level set of F at point x 2 dom(F ) is
defined by

XF (x ) := {y 2 dom(F ) : F (y)  F (x )}.

Without loss of generality, we restrict our discussions below to the level set
X

0

:= XF (x 0) given by some x 0 2 dom(F ), e.g., the initial iterate.
• Lipschitz continuity g is convex and Lipschitz continuous with constant Lg for all

x , y 2 X
0

:

g(x ) - g(y)  Lgkx - yk,
• Bounded H There exists positive constants M and � such that for all k � 0, at

the k -th iteration:

�I � �k I � Hk �MkI �MI

• There exists a positive constant DX0 such that for all iterates {x k }:

sup
x⇤2X ⇤

kx k - x ⇤k  DX0
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Exact Case 
Exact Case
Theorem
Let the sequence {x k } be generated such that for all k , x k+1  pHk (x

k ) with

sufficient decrease held at pHk (x
k ). Then the sequence {x k } satisfy

F (x k ) - F ⇤  2M 2(DX0M + 2Lg )
2

⇢�3

1
k
.

Remark

• if Hk = L(f )I for all k , as in standard proximal gradient methods, where L(f ) is
the Lipschitz constant of rf (x ), then the bound becomes

F (x k ) - F ⇤  2(DX0L(f ) + 2Lg )
2

⇢L(f )
1
k
⇡

2D2

X0L(f )
k

,

• if Lg ⌧ DX0L(f ). This bound is similar to 2kx0-x⇤k2L(f )
k established for proximal

gradient methods, assuming that DX0 is comparable to kx 0 - x ⇤k.
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Exact Case
Theorem
Given x 0 2 Rn

, let the sequence {x k } be generated such that for all k � 0,

x k+1  pHk (x
k ) with sufficient decrease held at pHk (x

k ). Then the sequence {x k }

satisfy

�Fk := F (x k ) - F ⇤  2M 2(DX0M + 2Lg )
2

⇢�3

1
k
.

Proof.

• F (x k ) - F (x k+1) �
c�F 2

k ,

• ...
I �Fk - �Fk+1

= F (xk ) - F (xk+1) � c�F2

k

I
1

�Fk
-

1

�Fk+1

� c
�Fk

�Fk+1

� c

I
1

�Fk
� kc +

1

�F
0

� kc

Xiaocheng Tang (Lehigh U.) San Diego 2014 5 / 56



Exact Case Exact Case
Theorem
Given x 0 2 Rn

, let the sequence {x k } be generated such that for all k � 0,

x k+1  pHk (x
k ) with sufficient decrease held at pHk (x

k ). Then the sequence {x k }

satisfy

�Fk := F (x k ) - F ⇤  2M 2(DX0M + 2Lg )
2

⇢�3

1
k
.

Proof.

• F (x k ) - F (x k+1) � c�F 2

k ,

�Fk - �Fk+1

= F (x k ) - F (x k+1) � c�F 2

k

1
�Fk

-
1

�Fk+1

� c
�Fk

�Fk+1

� c.

1
�Fk

� kc +
1

�F
0

� kc,

Xiaocheng Tang (Lehigh U.) San Diego 2014 5 / 56

Exact Case
Theorem
Let assumptions hold and for all k let x k+1 := pHk (x

k ) where pHk (x
k ) satisfies the

sufficient decrease condition. Then the iterates {x k } satisfy

F (x k ) - F ⇤  2M 2(DX0M + 2Lg )
2

⇢�3

1
k
.

Proof.

• F (x k )-F (x k+1) � c�F 2

k ,

• �Fk  c
1

krf (x k ) + �k+1

g k
I �k+1

g is such that satisfies the optimality condition
of Q

• F (x k ) - F (x k+1) � c
2

krf (x k ) + �k+1

g k2.
I from sufficient decrease condition
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• Nesterov [2004], Nesterov and Polyak [2006], Cartis et al. [2012]
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Two Pillars (Part 1)Two Pillars (Part 1)
Lemma
Consider F (·) and any three points u , v ,w 2 dom(F ), and we have

F (u) - F (w)  krf (u) + �v
g,�kku - wk + 2Lgku - vk + 2�.

where �v
g,� 2 @�g(v) is any �-subgradient of g(·) at point v .

Remark
• consider u = x k ,w = x ⇤ and v = x k+1

I u – starting point
I w – final point
I v – point in the middle to connect u and w

• exact case u == v implies optimality of F (·)! (� = 0)
I with the first term krf (u) + �v

g,�k also phased out, as we shall see later

• inexact case u == v? (� 6= 0)
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Two Pillars (Part 2)Two Pillars (Part 2)
Lemma
Let x k+1 := pHk ,�k (x

k ) with some �k � 0. Then

Q(Hk , x k , x k ) - Q(Hk , x k+1, x k ) � �k

2
kx k+1 - x kk2 -

p
2Mk�kkx k+1 - x kk - �k .

Moreover there exists a vector �k+1

g,� 2 @g�k (x
k+1) such that the following bounds hold:

1
Mk
krf (x k ) + �k+1

g,� k -
p

2Mk�k

Mk
 kx k+1 - x kk  1

�k
krf (x k ) + �k+1

g,� k +
p

2Mk�k

�k
.

Remark

• especially useful when combined with sufficient decrease condition!
• inexact case the lower bound on kx k+1 - x kk might become trivial!
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Inexact CaseInexact Case
Lemma
Consider kth iteration with 0  �k  1, x k+1 := pHk ,�k (x

k ) and �Fk :=
F (x k )-F (x ⇤). Then there exists large enough positive constant ✓ > 0,

such that one of the following two cases must hold,

�Fk  bk
p

�k , (1.1)
1

�Fk+1

-
1

�Fk
� ck . (1.2)

where bk and ck are given below,

bk = ✓DX0

p
2Mk +

2(1 + ✓)Lg

�k

p
2Mk + 2,

ck =
⇢(�3

k (✓ - 1)2 - 2�kM 2

k (1 + ✓) - �3

kMk )

(
p

2DX0✓�kMk + 2
p

2Lg (1 + ✓)Mk + �k
p

Mk )2
.

Xiaocheng Tang (Lehigh U.) San Diego 2014 10 / 56



Inexact CaseInexact Case
Remark

• two cases corresponds to

krf (x k ) + �k+1

g,� k < ✓
p

2Mk�k ) (1.1),

krf (x k ) + �k+1

g,� k � ✓
p

2Mk�k ) (1.2).

• the lemma applies for any value of ✓ for which tk , and hence, ck is positive for all k .
• large ✓ imply large values of ck , i.e., better rate w.r.t. (1.2).
• large ✓ is likely to cause both Case 1 to hold, i.e., (1.1), and a large bk .
• the overall rate of convergence of the algorithm is derived using the two bounds -

(1.1) and (1.2)
• the overall bound, thus, will depend on the upper bound on bk ’s and the inverse of

the lower bound on ck ’s.
• If, again, we assume that �k = Mk = L(f ) for all k , then ✓ = O(

p
L(f )) is

sufficient to ensure that ck > 0 and this results in bk  O(DX0L(f )) and
1/ck � O(D2

X0L(f )), thus again, we obtain a bound which is comparable to that of
proximal gradient methods, although with more complex constants.
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Inexact CaseInexact Case

Theorem
Let the sequence {x k } be generated such that for all k , x k+1  pHk ,�k (x

k ) with

sufficient decrease held at pHk ,�k (x
k ) and with some �k � 0 that satisfy

�k 
a2

k2

, with 0 < a  1.

Let ✓ be chosen as specified in the previous Lemma. Then for any k

F (x k ) - F (x ⇤) 
max{ba , 1

c }

k - 1

Xiaocheng Tang (Lehigh U.) San Diego 2014 14 / 22

Inexact Case

Remark

• it follows that the inexact algorithm has sublinear convergence rate if �i  a2/i2

for some a < 1 and all iterations i = 0, . . . , k .
• in contrast, the analysis in [Schmidt et al., 2011] require that

P1
i=0

p
�i is

bounded (and only applied to proximal gradient methods).
• this bound on the overall sequence is clearly stronger than �i  a2/i2, sinceP1

i=0

a
i = 1.

• on the other hand, it does not impose any particular requirement on any given
iteration, except that each �i is finite, which our bound on �i is assumed to
hold at each iteration, so far.

Xiaocheng Tang (Lehigh U.) San Diego 2014 15 / 22
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Total ComplexityTotal Complexity
Theorem
Suppose that at the k -th iteration function Q(Hk , ·, x k ) is approximately minimized, to

obtain x k+1

by applying l(k) = ↵k + � steps of any algorithm which guarantees that

Q(Hk , x k+1, x k )  Q(Hk , x k , x k ) and whose convergence rate ensures the error bound

�k  a2/(↵k + �)2 for some a > 0. Then accuracy F (x k ) - F (x ⇤)  ✏ is achieved

after at most

K = �(
max{ba , 1

c }

✏
+ 1) +

↵

2
(
max{ba , 1

c }

✏
)(

max{ba , 1

c }

✏
+ 1)

inner iterations (of the chosen algorithm).

Remark

• O( 1

✏2 ) inner steps!
• what about � decreasing at linear rate? (recall Q is strongly convex!)
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Total ComplexityTotal Complexity
Theorem
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�k  �l(k)MQ , for some constants 0 < � < 1 and MQ > 0. Then, by setting

lk = 2log 1
�
(k), accuracy F (x k ) - F (x ⇤)  ✏ is achieved after at most

K =
tX

k=0

2 log 1
�
(k)  2t log 1

�
(t)

inner iterations (of the chosen algorithm), with t = dmax{ba, 1c }

✏ + 1e.
Remark
• O( 1

✏ log( 1

✏ )) inner steps!
• imagine choosing such an inner algorithm that

I per iteration complexity independent of n!
I exploit the curvature of F (·)

• global complexity independent of problem size, and locally super-linear rate! (too
good to be true?!)
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Total Complexity

Remark
• O( 1

✏ log( 1

✏ )) inner steps!
• O( 1

✏ ) outer steps for ISTA!
• inner problem is well-structured, i.e., quadratic + simple

regularization
• outer problem, i.e., F (·), can be complicated!
• each inner step exploits structure
• same steps as ISTA, but each step independent of n!
• global complexity independent of n!
• locally super-linear rate!
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 While direction is not good: 
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  Update local approximation  
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 Update variables

For j = 1,2,…,l(k):  
!
 Minimize local approximation

Randomized 
Coordinate 

Descent
each RCD step takes  

constant time  
independent of  

data size!

L-BFGS with  
low-rank 
structure

locally super-linear rate!
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Coordinate 
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independent of  
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Probabilistic CaseProbabilistic Case

Theorem
Let the sequence {x k } be generated such that for all k , x k+1  pHk ,�k (x

k ) with

sufficient decrease held at pHk ,�k (x
k ) and with some �k � 0 that satisfy

P {�k 
a2

k2

} � 1 - p, for some 0 < a  1 and 0  p < 1,

conditioned on the past. Let ✓, b and c be as specified in Theorem 12. Then for any k

E(F (x k ) - F (x ⇤)) 
max{ba , 1

c }(2 - p)
(1 - p)(k - 1)

.

Remark

• the expectation of �k needs to decrease at a rate faster than O( 1

k2 ).
• for 1 - p percent of the time we have ‘good’ steps, with sufficient decrease on F .
• for the rest p percent of the time steps are ‘bad’. But F still decreases.
• for large enough k , we will, eventually, have enough number of ‘good’ steps!
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Probabilistic CaseProbabilistic Case

Lemma
[Richtárik and Takáč, 2012] Let v be the initial point and Q⇤ := minu2Rn Q(H ,u , v). If

vl is the random point generated by applying l Randomized Coordinate Descent (RCD)

steps to a strongly convex function Q , then for some constant we have

P {Q(H , vl , v) - Q⇤ � �}  p,

as long as

i � n(1 + µ(H )) log(
Q(H , v , v) - Q⇤

�p
),

where µ(H ) is a constant that measures conditioning of H along the coordinate

directions and in the worst case is at most M/� - the condition number of H .

Remark

• RCD the expectation of �k decreases at a linear rate, i.e., O(�k ).

• the constant � = e- 1
n(1+µ(Hk )) , which depends on n!

• hence, l(k) = O(n(1 + µ(H )) log(kp/MQ)), which is O(n log(k))!
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ConclusionsConclusions
• novel global analysis of Inexact Proximal Newton-like methods (IPN)

I
Schmidt et al. [2011] analyzes Inexact Proximal Gradient (IPG), which is a special

case of IPN when H is diagonal, and which requires a stronger condition on error �.

I
Jiang et al. [2012] also analyzes global rate for Proximal Newton, which requires

much stricter conditions, i.e., Hk - Hk+1

⌫ 0 (while providing FISTA-like rate).

I
Byrd et al. [2013] demonstrate super linear local convergence rate of the proximal

Newton-like method (with the same sufficient decrease condition as ours, but applied

within a line search).

• probabilistic analysis of RCD within IPN framework
• efficient algorithm combining RCD with L-BFGS within IPN framework

I O( n
✏ log( 1

✏ )) RCD steps (yes, we do need n!)

I
the use of active-set can reduce n to nnz!

I
and each RCD step takes constant time!

I
and yes, we do notice super linear local convergence rate!

• provides theoretical guarantee to popular machine learning packages QUIC and
LIBLINEAR.
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I
the use of active-set can reduce n to nnz!

I
and each RCD step takes constant time!

I
and yes, we do notice super linear local convergence rate!

• provides theoretical guarantee to popular machine learning packages QUIC and
LIBLINEAR.

• and a C/C++ implementation (with MATLAB and command line interface)
I

generic subproblem solver

I
generic objective interface

I
specialized L-BFGS compact representation library
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Q&AQuestions

• can we apply L-BFGS to non-smooth function? (yes)
• can we combine L-BFGS with Randomized Coordinate Descent? (yes)
• is it faster than ISTA/FISTA? (yes)
• is it faster than L-BFGS with ISTA/FISTA? (yes)
• what is the complexity for each RCD step? (constant)
• how many RCD steps should we run per iteration? (O(n log(k)))
• how many RCD steps do we need to achieve ✏-accuracy? (O( n

✏ log( 1

✏ )))

Xiaocheng Tang (Lehigh U.) San Diego 2014 5 / 26



LHACLHAC

$ ./lhac.cmd -h
# output
Usage: lhac [options] training_set_file or model_file (see option m)
options:
-m model_file : model_file existence indicator (default false)

true -- read from model_file without training
false -- train a new model from training_set_file

-p test file: apply model on the testing file
and output the result to stdout

-d dense format : set matrix format dense or sparse (default 1)
1 -- dense
0 -- sparse

-l loss function : set type of loss function (default log)
log -- logistic regression
square -- least square

-c lambda : set the regularization parameter (default 1)
-a : pre -compute A^TA in least sqaure (default true)
-i : max number of iterations (default 1000)
-e epsilon : set tolerance of termination criterion

final ista step size <= eps*( initial ista step size)
-v : set the verbose level (default 0)

0 -- no output
1 -- outer iteration
2 -- sufficient decrease iteration
3 -- coordinate descent iteration
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Practical Inexact Proximal Quasi-Newton Method with Global Complexity Analysis
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