Efficient Optimization in Structured Learning

Xiaocheng Tang with
Katya Scheinberg

- can we apply L-BFGS to non-smooth function?
- can we combine L-BFGS with Randomized Coordinate Descent?
- is it faster than ISTA/FISTA?
- is it faster than L-BFGS with ISTA/FISTA?
- what is the complexity for each RCD step?
- how many RCD steps should we run per iteration?
- how many RCD steps do we need to achieve e-accuracy?

Objective

- consider minimizing the following composite function:

$$
\min _{x \in \mathbb{R}^{n}} F(x) \equiv f(x)+g(x)
$$

- for example, sparse optimization
- Classification - Sparse Logistic Regression (SLR)

$$
f(w)=\frac{1}{N} \sum_{i=1}^{N} \log \left(1+\exp \left(-y_{i} \cdot w^{T} x_{i}\right)\right), \quad g(w)=\lambda\|w\|_{1}, \quad w \in \mathbb{R}^{p}
$$

training set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N} \in\left(\mathbb{R}^{p} \times\{-1,1\}\right)$

- Graphical model - Sparse Inverse Covariance Selection (SICS)

$$
f(X)=-\log \operatorname{det} X+\operatorname{tr}(S X), \quad g(X)=\lambda\|X\|_{1}, \quad X \in \mathbb{S}_{++}^{p}
$$

low rank sample covariance matrix $S \in \mathbb{S}_{+}^{p}$ - more observations than number of random variables.

- and many others, e.g., elastic net, group lasso, matrix completion (with nuclear norm), dictionary learning (with hierarchical norm), etc.

Outer loop
 For $k=1,2, \ldots$:

$Q(H, u, v)$

Inner loop

Construct local approximation

For $j=1,2, \ldots$:
Minimize local approximation
Update variables

Outer loop
 For $k=1,2, \ldots$:

$Q(H, u, v)$

Inner loop

Construct local approximation

what if the local approximation is bad?

For $j=1,2, \ldots$:
Minimize local approximation
Update variables

Outer loop
 For $k=1,2, \ldots$:

$Q(H, u, v)$

Check Sufficient Decrease

Inner loop

Construct local approximation

While direction is not good:
Update local approximation
For $\mathrm{j}=1,2, \ldots$:
Minimize local approximation
Update variables

$$
\text { Outer loop For } k=1,2, \ldots \text { : }
$$

$Q(H, u, v)$

Check Sufficient Decrease

Inner loop

Inexact Solver

Construct local approximation

While direction is not good:

Update local approximation

For $j=1,2, \ldots$:
Minimize local approximation
Update variables

$$
\text { Outer loop For } k=1,2, \ldots:
$$

$Q(H, u, v)$

Check Sufficient Decrease

Inner loop

Inexact Solver

Construct local approximation

While direction is not good:

Update local approximation

For $j=1,2, \ldots$:
until when?
Minimize local approximation
Update variables

$$
\text { Outer loop For } \mathbf{k}=1,2, \ldots:
$$

$Q(H, u, v)$

Check Sufficient Decrease

Inner loop

Inexact Solver

Construct local approximation

While direction is not good:

Update local approximation

$$
\text { For } j=1,2, \ldots, \mathbf{k}:
$$

Minimize local approximation
Update variables

$$
\text { Outer loop For } \mathbf{k}=1,2, \ldots:
$$

$Q(H, u, v)$

Check Sufficient Decrease

Inner loop

Inexact Solver

Construct local approximation

While direction is not good:

Update local approximation

$$
\text { For } j=1,2, \ldots, l(k):
$$

Minimize local approximation
Update variables

$$
\text { Outer loop For } \mathbf{k}=1,2, \ldots:
$$

$Q(H, u, v)$

Check Sufficient Decrease

Inner loop

Inexact Solver

Construct local approximation

While d What is $l(k)$? good : Update tounapproximation

$$
\text { For } j=1,2, \ldots, l(k):
$$

```
    Minimize local approximation
```

Update variables

Basics

- Objective $F(x)$ and Local approximation $Q(H, v, u)$

$$
\begin{aligned}
F(x) & =f(x)+g(x), \\
Q(H, v, u) & =f(u)+\langle\nabla f(u), v-u\rangle+\frac{1}{2}\langle v-u, H(v-u)\rangle+g(v) .
\end{aligned}
$$

- Exact minimizer $p_{H}(u)$ and Inexact minimizer $p_{H, \phi}(u)$

$$
\begin{aligned}
p_{H}(u) & =\arg \min _{v} Q(H, v, u), \\
Q\left(H, p_{H, \phi}(u), u\right) & \leq Q(H, u, u)=F(u), \\
\text { and } Q\left(H, p_{H, \phi}(u), u\right) & \leq Q\left(H, p_{H}(u), u\right)+\phi
\end{aligned}
$$

- Sufficient decrease condition

$$
\begin{aligned}
& x^{k+1}:=p_{H_{k}}\left(x^{k}\right) \text { or } p_{H_{k}, \phi_{k}}\left(x^{k}\right) \\
& F\left(x^{k+1}\right)-F\left(x^{k}\right) \leq \rho\left(Q\left(H_{k}, x^{k+1}, x^{k}\right)-F\left(x^{k}\right)\right)
\end{aligned}
$$

- Hessian or Hessian approximation G (and H)

$$
H \leftarrow \frac{1}{\mu} I+G
$$

Outer loop For $\mathbf{k}=1,2, \ldots$:
$Q\left(G_{k}, \nabla f_{k}, \cdot, x^{k}\right)$

Check Sufficient Decrease
$\mu_{k} \leftarrow \mu_{k} / 2$

Inner loop
$p_{H_{k}, \phi_{k}}\left(x^{k}\right)$
$x^{k+1} \leftarrow p_{H_{k}, \phi_{k}}\left(x^{k}\right)$

Construct local approximation

 While direction is not good:
Update local approximation

$$
\text { For } j=1,2, \ldots, l(k)
$$

Minimize local approximation
Update variables

Assumptions

- Existence The set of optimal solutions, X^{*}, is nonempty; x^{*} is any element of X^{*}.
- Bounded Level Set The effective domain of F is defined as $\operatorname{dom}(F):=\left\{x \in \mathbb{R}^{n}: F(x)<\infty\right\}$, and the level set of F at point $x \in \operatorname{dom}(F)$ is defined by

$$
\mathcal{X}_{F}(x):=\{y \in \operatorname{dom}(F): F(y) \leq F(x)\}
$$

Without loss of generality, we restrict our discussions below to the level set $\mathcal{X}_{0}:=\mathcal{X}_{F}\left(x^{0}\right)$ given by some $x^{0} \in \operatorname{dom}(F)$, e.g., the initial iterate.

- Lipschitz continuity g is convex and Lipschitz continuous with constant L_{g} for all $x, y \in \mathcal{X}_{0}$:

$$
g(x)-g(y) \leq L_{g}\|x-y\|
$$

- Bounded H There exists positive constants M and σ such that for all $k \geq 0$, at the k-th iteration:

$$
\sigma I \preceq \sigma_{k} I \preceq H_{k} \preceq M_{k} I \preceq M I
$$

- There exists a positive constant $D_{\mathcal{X}_{0}}$ such that for all iterates $\left\{x^{k}\right\}$:

$$
\sup _{x^{*} \in X^{*}}\left\|x^{k}-x^{*}\right\| \leq D_{\mathcal{X}_{0}}
$$

Exact Case

Theorem

Given $x^{0} \in \mathbb{R}^{n}$, let the sequence $\left\{x^{k}\right\}$ be generated such that for all $k \geq 0$, $x^{k+1} \leftarrow p_{H_{k}}\left(x^{k}\right)$ with sufficient decrease held at $p_{H_{k}}\left(x^{k}\right)$. Then the sequence $\left\{x^{k}\right\}$ satisfy

$$
\Delta F_{k}:=F\left(x^{k}\right)-F^{*} \leq \frac{2 M^{2}\left(D_{\mathcal{X}_{0}} M+2 L_{g}\right)^{2}}{\rho \sigma^{3}} \frac{1}{k} .
$$

Remark

- if $H_{k}=L(f) I$ for all k, as in standard proximal gradient methods, where $L(f)$ is the Lipschitz constant of $\nabla f(x)$, then the bound becomes

$$
F\left(x^{k}\right)-F^{*} \leq \frac{2\left(D_{\mathcal{X}_{0}} L(f)+2 L_{g}\right)^{2}}{\rho L(f)} \frac{1}{k} \approx \frac{2 D_{\mathcal{X}_{0}}^{2} L(f)}{k},
$$

- if $L_{g} \ll D_{\mathcal{X}_{0}} L(f)$. This bound is similar to $\frac{2\left\|x^{0}-x^{*}\right\|^{2} L(f)}{k}$ established for proximal gradient methods, assuming that $D_{\mathcal{X}_{0}}$ is comparable to $\left\|x^{0}-x^{*}\right\|$.

Exact Case

Theorem

Given $x^{0} \in \mathbb{R}^{n}$, let the sequence $\left\{x^{k}\right\}$ be generated such that for all $k \geq 0$, $x^{k+1} \leftarrow p_{H_{k}}\left(x^{k}\right)$ with sufficient decrease held at $p_{H_{k}}\left(x^{k}\right)$. Then the sequence $\left\{x^{k}\right\}$ satisfy

$$
\Delta F_{k}:=F\left(x^{k}\right)-F^{*} \leq \frac{2 M^{2}\left(D_{\mathcal{X}_{0}} M+2 L_{g}\right)^{2}}{\rho \sigma^{3}} \frac{1}{k} .
$$

Proof.

- $\Delta F_{k}-\Delta F_{k+1}=F\left(x^{k}\right)-F\left(x^{k+1}\right) \geq c \Delta F_{k}^{2}$
- $F\left(x^{k}\right)-F\left(x^{k+1}\right) \geq c \Delta F_{k}^{2}$,
- $\frac{1}{\Delta F_{k}}-\frac{1}{\Delta F_{k+1}} \geq c \frac{\Delta F_{k}}{\Delta F_{k+1}} \geq c$
- $\frac{1}{\Delta F_{k}} \geq k c+\frac{1}{\Delta F_{0}} \geq k c$
- Nesterov [2004], Nesterov and Polyak [2006], Cartis et al. [2012]

Exact Case

Theorem

Given $x^{0} \in \mathbb{R}^{n}$, let the sequence $\left\{x^{k}\right\}$ be generated such that for all $k \geq 0$, $x^{k+1} \leftarrow p_{H_{k}}\left(x^{k}\right)$ with sufficient decrease held at $p_{H_{k}}\left(x^{k}\right)$. Then the sequence $\left\{x^{k}\right\}$ satisfy

$$
\Delta F_{k}:=F\left(x^{k}\right)-F^{*} \leq \frac{2 M^{2}\left(D_{\mathcal{X}_{0}} M+2 L_{g}\right)^{2}}{\rho \sigma^{3}} \frac{1}{k} .
$$

Proof.

- $F\left(x^{k}\right)-F\left(x^{k+1}\right) \geq c \Delta F_{k}^{2}$,
- $\Delta F_{k} \leq c_{1}\left\|\nabla f\left(x^{k}\right)+\gamma_{g}^{k+1}\right\|$,
- $F\left(x^{k}\right)-F\left(x^{k+1}\right) \geq c_{2}\left\|\nabla f\left(x^{k}\right)+\gamma_{g}^{k+1}\right\|^{2}$.

Exact Case

Theorem

Given $x^{0} \in \mathbb{R}^{n}$, let the sequence $\left\{x^{k}\right\}$ be generated such that for all $k \geq 0$, $x^{k+1} \leftarrow p_{H_{k}}\left(x^{k}\right)$ with sufficient decrease held at $p_{H_{k}}\left(x^{k}\right)$. Then the sequence $\left\{x^{k}\right\}$ satisfy

$$
\Delta F_{k}:=F\left(x^{k}\right)-F^{*} \leq \frac{2 M^{2}\left(D_{\mathcal{X}_{0}} M+2 L_{g}\right)^{2}}{\rho \sigma^{3}} \frac{1}{k} .
$$

Proof.

- $F\left(x^{k}\right)-F\left(x^{k+1}\right) \geq c \Delta F_{k}^{2}$,
- $\Delta F_{k} \leq c_{1}\left\|\nabla f\left(x^{k}\right)+\gamma_{g}^{k+1}\right\|$,
- $F\left(x^{k}\right)-F\left(x^{k+1}\right) \geq c_{2}\left\|\nabla f\left(x^{k}\right)+\gamma_{g}^{k+1}\right\|^{2}$.

Two Pillars!

Inexact Case

Theorem

Given $x^{0} \in \mathbb{R}^{n}$, let the sequence $\left\{x^{k}\right\}$ be generated such that for all $k \geq 0$, $x^{k+1} \leftarrow p_{H_{k}}\left(x^{k}\right)$ with sufficient decrease held at $p_{H_{k}}\left(x^{k}\right)$. Then the sequence $\left\{x^{k}\right\}$ satisfy

$$
\Delta F_{k}:=F\left(x^{k}\right)-F^{*} \leq \frac{2 M^{2}\left(D_{\mathcal{X}_{0}} M+2 L_{g}\right)^{2}}{\rho \sigma^{3}} \frac{1}{k} .
$$

Proof.

- $F\left(x^{k}\right)-F\left(x^{k+1}\right) \geq c \Delta F_{k}^{2}$,
- $\Delta F_{k} \leq c_{1}\left\|\nabla f\left(x^{k}\right)+\gamma_{g, \phi}^{k+1}\right\|$,
- $F\left(x^{k}\right)-F\left(x^{k+1}\right) \geq c_{2}\left\|\nabla f\left(x^{k}\right)+\gamma_{g, \phi}^{k+1}\right\|^{2}$.

Inexact Case

Theorem

Given $x^{0} \in \mathbb{R}^{n}$, let the sequence $\left\{x^{k}\right\}$ be generated such that for all $k \geq 0$, $x^{k+1} \leftarrow p_{H_{k}}\left(x^{k}\right)$ with sufficient decrease held at $p_{H_{k}}\left(x^{k}\right)$. Then the sequence $\left\{x^{k}\right\}$ satisfy

$$
\Delta F_{k}:=F\left(x^{k}\right)-F^{*} \leq \frac{2 M^{2}\left(D_{\mathcal{X}_{0}} M+2 L_{g}\right)^{2}}{\rho \sigma^{3}} \frac{1}{k} .
$$

Proof.

- $F\left(x^{k}\right)-F\left(x^{k+1}\right) \geq c \Delta F_{k}^{2}$,
- $\Delta F_{k} \leq c_{1}\left\|\nabla f\left(x^{k}\right)+\gamma_{g, \phi}^{k+1}\right\|$,
- $F\left(x^{k}\right)-F\left(x^{k+1}\right) \geq c_{2}\left\|\nabla f\left(x^{k}\right)+\gamma_{g, \phi}^{k+1}\right\|^{2}$.

NOT always true!

Two Pillars (Part 1)

Lemma

Consider $F(\cdot)$ and any three points $u, v, w \in \operatorname{dom}(F)$, and we have

$$
F(u)-F(w) \leq\left\|\nabla f(u)+\gamma_{g, \phi}^{v}\right\|\|u-w\|+2 L_{g}\|u-v\|+2 \phi .
$$

where $\gamma_{g, \phi}^{v} \in \partial_{\phi} g(v)$ is any ϕ-subgradient of $g(\cdot)$ at point v.

Remark

- consider $u=x^{k}, w=x^{*}$ and $v=x^{k+1}$
- u - starting point
- w - final point
- v - point in the middle to connect u and w
- exact case $u==v$ implies optimality of $F(\cdot)!(\phi=0)$
- with the first term $\left\|\nabla f(u)+\gamma_{g, \phi}^{v}\right\|$ also phased out, as we shall see later
- inexact case $u==v ?(\phi \neq 0)$

Two Pillars (Part 2)

Lemma

Let $x^{k+1}:=p_{H_{k}, \phi_{k}}\left(x^{k}\right)$ with some $\phi_{k} \geq 0$. Then

$$
Q\left(H_{k}, x^{k}, x^{k}\right)-Q\left(H_{k}, x^{k+1}, x^{k}\right) \geq \frac{\sigma_{k}}{2}\left\|x^{k+1}-x^{k}\right\|^{2}-\sqrt{2 M_{k} \phi_{k}}\left\|x^{k+1}-x^{k}\right\|-\phi_{k} .
$$

Moreover there exists a vector $\gamma_{g, \phi}^{k+1} \in \partial g_{\phi_{k}}\left(x^{k+1}\right)$ such that the following bounds hold:

$$
\frac{1}{M_{k}}\left\|\nabla f\left(x^{k}\right)+\gamma_{g, \phi}^{k+1}\right\|-\frac{\sqrt{2 M_{k} \phi_{k}}}{M_{k}} \leq\left\|x^{k+1}-x^{k}\right\| \leq \frac{1}{\sigma_{k}}\left\|\nabla f\left(x^{k}\right)+\gamma_{g, \phi}^{k+1}\right\|+\frac{\sqrt{2 M_{k} \phi_{k}}}{\sigma_{k}} .
$$

Remark

- especially useful when combined with sufficient decrease condition!
- inexact case the lower bound on $\left\|x^{k+1}-x^{k}\right\|$ might become trivial!

Inexact Case

Lemma

Consider k th iteration with $0 \leq \phi_{k} \leq 1, x^{k+1}:=p_{H_{k}, \phi_{k}}\left(x^{k}\right)$ and $\Delta F_{k}:=$ $F\left(x^{k}\right)-F\left(x^{*}\right)$. Then there exists large enough positive constant $\theta>0$, such that one of the following two cases must hold,

$$
\begin{align*}
& \Delta F_{k} \leq b_{k} \sqrt{\phi_{k}} \tag{1.1}\\
& \frac{1}{\Delta F_{k+1}}-\frac{1}{\Delta F_{k}} \geq c_{k} \tag{1.2}
\end{align*}
$$

where b_{k} and c_{k} are given below,

$$
\begin{aligned}
b_{k} & =\theta D_{\mathcal{X}_{0}} \sqrt{2 M_{k}}+\frac{2(1+\theta) L_{g}}{\sigma_{k}} \sqrt{2 M_{k}}+2 \\
c_{k} & =\frac{\rho\left(\sigma_{k}^{3}(\theta-1)^{2}-2 \sigma_{k} M_{k}^{2}(1+\theta)-\sigma_{k}^{3} M_{k}\right)}{\left(\sqrt{2} D_{\mathcal{X}_{0}} \theta \sigma_{k} M_{k}+2 \sqrt{2} L_{g}(1+\theta) M_{k}+\sigma_{k} \sqrt{M_{k}}\right)^{2}}
\end{aligned}
$$

Inexact Case

Remark

- two cases corresponds to

$$
\begin{aligned}
& \left\|\nabla f\left(x^{k}\right)+\gamma_{g, \phi}^{k+1}\right\|<\theta \sqrt{2 M_{k} \phi_{k}} \Rightarrow(1.1) \\
& \left\|\nabla f\left(x^{k}\right)+\gamma_{g, \phi}^{k+1}\right\| \geq \theta \sqrt{2 M_{k} \phi_{k}} \Rightarrow(1.2)
\end{aligned}
$$

- the lemma applies for any value of θ for which t_{k}, and hence, c_{k} is positive for all k.
- large θ imply large values of c_{k}, i.e., better rate w.r.t. (1.2).
- large θ is likely to cause both Case 1 to hold, i.e., (1.1), and a large b_{k}.
- the overall rate of convergence of the algorithm is derived using the two bounds (1.1) and (1.2)
- the overall bound, thus, will depend on the upper bound on b_{k} 's and the inverse of the lower bound on c_{k} 's.
- If, again, we assume that $\sigma_{k}=M_{k}=L(f)$ for all k, then $\theta=O(\sqrt{L(f)})$ is sufficient to ensure that $c_{k}>0$ and this results in $b_{k} \leq O\left(D_{\mathcal{X}_{0}} L(f)\right)$ and $1 / c_{k} \geq O\left(D_{\mathcal{X}_{0}}^{2} L(f)\right)$, thus again, we obtain a bound which is comparable to that of proximal gradient methods, although with more complex constants.

Inexact Case

Lemma

Consider k th iteration with $0 \leq \phi_{k} \leq 1, x^{k+1}:=p_{H_{k}, \phi_{k}}\left(x^{k}\right)$ and $\Delta F_{k}:=$ $F\left(x^{k}\right)-F\left(x^{*}\right)$. Then there exists large enough positive constant $\theta>0$, such that one of the following two cases must hold,

$$
\begin{align*}
& \Delta F_{k} \leq b_{k} \sqrt{\phi_{k}} \tag{1.1}\\
& \frac{1}{\Delta F_{k+1}}-\frac{1}{\Delta F_{k}} \geq c_{k} \tag{1.2}
\end{align*}
$$

where b_{k} and c_{k} are given below,

$$
\begin{aligned}
b_{k} & =\theta D_{\mathcal{X}_{0}} \sqrt{2 M_{k}}+\frac{2(1+\theta) L_{g}}{\sigma_{k}} \sqrt{2 M_{k}}+2 \\
c_{k} & =\frac{\rho\left(\sigma_{k}^{3}(\theta-1)^{2}-2 \sigma_{k} M_{k}^{2}(1+\theta)-\sigma_{k}^{3} M_{k}\right)}{\left(\sqrt{2} D_{\mathcal{X}_{0}} \theta \sigma_{k} M_{k}+2 \sqrt{2} L_{g}(1+\theta) M_{k}+\sigma_{k} \sqrt{M_{k}}\right)^{2}}
\end{aligned}
$$

Inexact Case

Lemma

Consider k th iteration with $0 \leq \phi_{k} \leq 1, x^{k+1}:=p_{H_{k}, \phi_{k}}\left(x^{k}\right)$ and $\Delta F_{k}:=$ $F\left(x^{k}\right)-F\left(x^{*}\right)$. Then there exists large enough positive constant $\theta>0$, such that one of the following two cases must hold,

$$
\begin{align*}
& \Delta F_{k} \leq b_{k} \sqrt{\phi_{k}} \tag{1.1}\\
& \frac{1}{\Delta F_{k+1}}-\frac{1}{\Delta F_{k}} \geq c_{k} \tag{1.2}
\end{align*}
$$

where b_{k} and c_{k} are given below,

$$
\begin{aligned}
b_{k} & =\theta D_{\mathcal{X}_{0}} \sqrt{2 M_{k}}+\frac{2(1+\theta) L_{g}}{\sigma_{k}} \sqrt{2 M_{k}}+2 \\
c_{k} & =\frac{\rho\left(\sigma_{k}^{3}(\theta-1)^{2}-2 \sigma_{k} M_{k}^{2}(1+\theta)-\sigma_{k}^{3} M_{k}\right)}{\left(\sqrt{2} D_{\mathcal{X}_{0}} \theta \sigma_{k} M_{k}+2 \sqrt{2} L_{g}(1+\theta) M_{k}+\sigma_{k} \sqrt{M_{k}}\right)^{2}}
\end{aligned}
$$

Inexact Case

Lemma

Consider k th iteration with $0 \leq \phi_{k} \leq 1, x^{k+1}:=p_{H_{k}, \phi_{k}}\left(x^{k}\right)$ and $\Delta F_{k}:=$ $F\left(x^{k}\right)-F\left(x^{*}\right)$. Then there exists large enough positive constant $\theta>0$, such that one of the following two cases must hold,

two horses tied running together!

$$
\begin{align*}
& \Delta F_{k} \leq b_{k} \sqrt{\phi_{k}} \tag{1.1}\\
& \frac{1}{\Delta F_{k+1}}-\frac{1}{\Delta F_{k}} \geq c_{k} \tag{1.2}
\end{align*}
$$

where b_{k} and c_{k} are given below,

$$
\begin{aligned}
b_{k} & =\theta D_{\mathcal{X}_{0}} \sqrt{2 M_{k}}+\frac{2(1+\theta) L_{g}}{\sigma_{k}} \sqrt{2 M_{k}}+2 \\
c_{k} & =\frac{\rho\left(\sigma_{k}^{3}(\theta-1)^{2}-2 \sigma_{k} M_{k}^{2}(1+\theta)-\sigma_{k}^{3} M_{k}\right)}{\left(\sqrt{2} D_{\mathcal{X}_{0}} \theta \sigma_{k} M_{k}+2 \sqrt{2} L_{g}(1+\theta) M_{k}+\sigma_{k} \sqrt{M_{k}}\right)^{2}}
\end{aligned}
$$

Inexact Case

Theorem

Let the sequence $\left\{x^{k}\right\}$ be generated such that for all $k, x^{k+1} \leftarrow p_{H_{k}, \phi_{k}}\left(x^{k}\right)$ with sufficient decrease held at $p_{H_{k}, \phi_{k}}\left(x^{k}\right)$ and with some $\phi_{k} \geq 0$ that satisfy

$$
\phi_{k} \leq \frac{a^{2}}{k^{2}}, \text { with } 0<a \leq 1
$$

Let θ be chosen as specified in the previous Lemma. Then for any k

$$
F\left(x^{k}\right)-F\left(x^{*}\right) \leq \frac{\max \left\{b a, \frac{1}{c}\right\}}{k-1}
$$

> faster than that there will be just constant improvement, and until a certain point!

Remark

- it follows that the inexact algorithm has sublinear convergence rate if $\phi_{i} \leq a^{2} / i^{2}$ for some $a<1$ and all iterations $i=0, \ldots, k$.
- in contrast, the analysis in [Schmidt et al., 2011] require that $\sum_{i=0}^{\infty} \sqrt{\phi_{i}}$ is bounded (and only applied to proximal gradient methods).
- this bound on the overall sequence is clearly stronger than $\phi_{i} \leq a^{2} / i^{2}$, since $\sum_{i=0}^{\infty} \frac{a}{i}=\infty$.
- on the other hand, it does not impose any particular requirement on any given iteration, except that each ϕ_{i} is finite, which our bound on ϕ_{i} is assumed to hold at each iteration, so far.

Inexact Case

Theorem

Let the sequence $\left\{x^{k}\right\}$ be generated such that for all $k, x^{k+1} \leftarrow p_{H_{k}, \phi_{k}}\left(x^{k}\right)$ with sufficient decrease held at $p_{H_{k}, \phi_{k}}\left(x^{k}\right)$ and with some $\phi_{k} \geq 0$ that satisfy

$$
\phi_{k} \leq \frac{a^{2}}{k^{2}}, \text { with } 0<a \leq 1
$$

Let θ be chosen as specified in the previous Lemma. Then for any k

$$
F\left(x^{k}\right)-F\left(x^{*}\right) \leq \frac{\max \left\{b a, \frac{1}{c}\right\}}{k-1}
$$

Remark

- it follows that the inexact algorithm has sublinear convergence rate if $\phi_{i} \leq a^{2} / i^{2}$ for some $a<1$ and all iterations $i=0, \ldots, k$.
- in contrast, the analysis in [Schmidt et al., 2011] require that $\sum_{i=0}^{\infty} \sqrt{\phi_{i}}$ is bounded (and only applied to proximal gradient methods).
- this bound on the overall sequence is clearly stronger than $\phi_{i} \leq a^{2} / i^{2}$, since $\sum_{i=0}^{\infty} \frac{a}{i}=\infty$.
- on the other hand, it does not impose any particular requirement on any given iteration, except that each ϕ_{i} is finite, which our bound on ϕ_{i} is assumed to hold at each iteration, so far.

Total Complexity

Theorem

Suppose that at the k-th iteration function $Q\left(H_{k}, \cdot, x^{k}\right)$ is approximately minimized, to obtain x^{k+1} by applying $l(k)=\alpha k+\beta$ steps of any algorithm which guarantees that $Q\left(H_{k}, x^{k+1}, x^{k}\right) \leq Q\left(H_{k}, x^{k}, x^{k}\right)$ and whose convergence rate ensures the error bound $\phi_{k} \leq a^{2} /(\alpha k+\beta)^{2}$ for some $a>0$. Then accuracy $F\left(x^{k}\right)-F\left(x^{*}\right) \leq \epsilon$ is achieved after at most

$$
K=\beta\left(\frac{\max \left\{b a, \frac{1}{c}\right\}}{\epsilon}+1\right)+\frac{\alpha}{2}\left(\frac{\max \left\{b a, \frac{1}{c}\right\}}{\epsilon}\right)\left(\frac{\max \left\{b a, \frac{1}{c}\right\}}{\epsilon}+1\right)
$$

inner iterations (of the chosen algorithm).

Remark

- $O\left(\frac{1}{\epsilon^{2}}\right)$ inner steps!
- what about ϕ decreasing at linear rate? (recall Q is strongly convex!)

Total Complexity

Theorem

Suppose that at the k-th iteration function $Q\left(H_{k}, u, x^{k}\right)$ is approximately minimized, to obtain x^{k+1} by applying $l(k)$ steps of an algorithm, which guarantees that $Q\left(H_{k}, x^{k+1}, x^{k}\right) \leq Q\left(H_{k}, x^{k}, x^{k}\right)$ and whose convergence rate ensures the error bound $\phi_{k} \leq \delta^{l(k)} M_{Q}$, for some constants $0<\delta<1$ and $M_{Q}>0$. Then, by setting $l_{k}=2 \log _{\frac{1}{\delta}}(k)$, accuracy $F\left(x^{k}\right)-F\left(x^{*}\right) \leq \epsilon$ is achieved after at most

$$
K=\sum_{k=0}^{t} 2 \log _{\frac{1}{\delta}}(k) \leq 2 t \log _{\frac{1}{\delta}}(t)
$$

inner iterations (of the chosen algorithm), with $t=\left\lceil\frac{\max \left\{b a, \frac{1}{c}\right\}}{\epsilon}+1\right\rceil$.

Remark

- $O\left(\frac{1}{\epsilon} \log \left(\frac{1}{\epsilon}\right)\right)$ inner steps!
- $O\left(\frac{1}{\epsilon}\right)$ outer steps for ISTA!
- inner problem is well-structured, i.e., quadratic + simple regularization
- outer problem, i.e., $F(\cdot)$, can be complicated!

Total Complexity

Theorem

Suppose that at the k-th iteration function $Q\left(H_{k}, u, x^{k}\right)$ is approximately minimized, to obtain x^{k+1} by applying $l(k)$ steps of an algorithm, which guarantees that $Q\left(H_{k}, x^{k+1}, x^{k}\right) \leq Q\left(H_{k}, x^{k}, x^{k}\right)$ and whose convergence rate ensures the error bound $\phi_{k} \leq \delta^{l(k)} M_{Q}$, for some constants $0<\delta<1$ and $M_{Q}>0$. Then, by setting
$l_{k}=2 \log _{\frac{1}{\delta}}(k)$, accuracy $F\left(x^{k}\right)-F\left(x^{*}\right) \leq \epsilon$ is achieved after at most

$$
K=\sum_{k=0}^{t} 2 \log _{\frac{1}{\delta}}(k) \leq 2 t \log _{\frac{1}{\delta}}(t)
$$

inner iterations (of the chosen algorithm), with $t=\left\lceil\frac{\max \left\{b a, \frac{1}{c}\right\}}{\epsilon}+1\right\rceil$.

Remark

- $O\left(\frac{1}{\epsilon} \log \left(\frac{1}{\epsilon}\right)\right)$ inner steps!
- $O\left(\frac{1}{\epsilon}\right)$ outer steps for ISTA!
- inner problem is well-structured, i.e., quadratic + simple regularization
- each inner step exploits structure
- same steps as ISTA, but each step independent of n !
- locally super-linear rate!
- outer problem, i.e., $F(\cdot)$, can be complicated!

Total Complexity

Theorem

Suppose that at the k-th iteration function $Q\left(H_{k}, u, x^{k}\right)$ is approximately minimized, to obtain x^{k+1} by applying $l(k)$ steps of an algorithm, which guarantees that $Q\left(H_{k}, x^{k+1}, x^{k}\right) \leq Q\left(H_{k}, x^{k}, x^{k}\right)$ and whose convergence rate ensures the error bound $\phi_{k} \leq \delta^{l(k)} M_{Q}$, for some constants $0<\delta<1$ and $M_{Q}>0$. Then, by setting
$l_{k}=2 \log _{\frac{1}{\delta}}(k)$, accuracy $F\left(x^{k}\right)-F\left(x^{*}\right) \leq \epsilon$ is achieved after at most

$$
K=\sum_{k=0}^{t} 2 \log _{\frac{1}{\delta}}(k) \leq 2 t \log _{\frac{1}{\delta}}(t)
$$

inner iterations (of the chosen algorithm), with $t=\left\lceil\frac{\max \left\{b a, \frac{1}{c}\right\}}{\epsilon}+1\right\rceil$.

Remark

- $O\left(\frac{1}{\epsilon} \log \left(\frac{1}{\epsilon}\right)\right)$ inner steps!
- $O\left(\frac{1}{\epsilon}\right)$ outer steps for ISTA!
- inner problem is well-structured, i.e., quadratic + simple regularization
- outer problem, i.e., $F(\cdot)$, can be complicated!
- each inner step exploits structure
- same steps as ISTA, but each step independent of n !
- locally super-linear rate!

For $\mathbf{k}=1,2, \ldots$:

L-BFGS with low-rank structure

locally super-linear rate!

Randomized Coordinate Descent
each RCD step takes constant time independent of data size!

Construct local approximation

While direction is not good:

Update local approximation

$$
\text { For } j=1,2, \ldots, l(k)
$$

Minimize local approximation

For $\mathbf{k}=1,2, \ldots$:

L-BFGS with low-rank structure

locally super-linear rate!

```
what is l(k)?
    k?
    log(k)?
```

Randomized Coordinate Descent
each RCD step takes constant time independent of data size!

Construct local approximation

 While direction is not good:$$
\text { For } j=1,2, \ldots, l(k)
$$

```
Minimize local approximation
```


Update variables

For $\mathbf{k}=1,2, \ldots$:

L-BFGS with low-rank structure

locally super-linear rate!

```
what is l(k)? \(n * \log (k)!\)
```

Randomized Coordinate Descent
each RCD step takes constant time independent of data size!

Construct local approximation

 While direction is not good:
Update local approximation

$$
\text { For } j=1,2, \ldots, l(k)
$$

```
Minimize local approximation
```


Probabilistic Case

Theorem

Let the sequence $\left\{x^{k}\right\}$ be generated such that for all $k, x^{k+1} \leftarrow p_{H_{k}, \phi_{k}}\left(x^{k}\right)$ with sufficient decrease held at $p_{H_{k}, \phi_{k}}\left(x^{k}\right)$ and with some $\phi_{k} \geq 0$ that satisfy

$$
P\left\{\phi_{k} \leq \frac{a^{2}}{k^{2}}\right\} \geq 1-p, \text { for some } 0<a \leq 1 \text { and } 0 \leq p<1,
$$

conditioned on the past. Let θ, b and c be as specified in Theorem 12. Then for any k

$$
E\left(F\left(x^{k}\right)-F\left(x^{*}\right)\right) \leq \frac{\max \left\{b a, \frac{1}{c}\right\}(2-p)}{(1-p)(k-1)} .
$$

Remark

- the expectation of ϕ_{k} needs to decrease at a rate faster than $O\left(\frac{1}{k^{2}}\right)$.
- for $1-p$ percent of the time we have 'good' steps, with sufficient decrease on F.
- for the rest p percent of the time steps are 'bad'. But F still decreases.
- for large enough k, we will, eventually, have enough number of 'good' steps!

Probabilistic Case

Lemma

[Richtárik and Takáč, 2012] Let v be the initial point and $Q^{*}:=\min _{u \in \mathbb{R}^{n}} Q(H, u, v)$. If v_{l} is the random point generated by applying l Randomized Coordinate Descent (RCD) steps to a strongly convex function Q, then for some constant we have

$$
P\left\{Q\left(H, v_{l}, v\right)-Q^{*} \geq \phi\right\} \leq p
$$

as long as

$$
i \geq n(1+\mu(H)) \log \left(\frac{Q(H, v, v)-Q^{*}}{\phi p}\right)
$$

where $\mu(H)$ is a constant that measures conditioning of H along the coordinate directions and in the worst case is at most M / σ - the condition number of H.

Remark

- RCD the expectation of ϕ_{k} decreases at a linear rate, i.e., $O\left(\delta^{k}\right)$.
- the constant $\delta=e^{-\frac{1}{n\left(1+\mu\left(H_{k}\right)\right)}}$, which depends on n !
- hence, $l(k)=O\left(n(1+\mu(H)) \log \left(k p / M_{Q}\right)\right)$, which is $O(n \log (k))$!

Conclusions

- novel global analysis of Inexact Proximal Newton-like methods (IPN)
- Schmidt et al. [2011] analyzes Inexact Proximal Gradient (IPG), which is a special case of IPN when H is diagonal, and which requires a stronger condition on error ϕ.
- Jiang et al. [2012] also analyzes global rate for Proximal Newton, which requires much stricter conditions, i.e., $H_{k}-H_{k+1} \succeq 0$ (while providing FISTA-like rate).
- Byrd et al. [2013] demonstrate super linear local convergence rate of the proximal Newton-like method (with the same sufficient decrease condition as ours, but applied within a line search).
- probabilistic analysis of RCD within IPN framework
- efficient algorithm combining RCD with L-BFGS within IPN framework
- $O\left(\frac{n}{\epsilon} \log \left(\frac{1}{\epsilon}\right)\right)$ RCD steps (yes, we do need $\left.n!\right)$
- the use of active-set can reduce n to nnz!
- and each RCD step takes constant time!
- and yes, we do notice super linear local convergence rate!
- provides theoretical guarantee to popular machine learning packages QUIC and LIBLINEAR.

Conclusions

- novel global analysis of Inexact Proximal Newton-like methods (IPN)
- Schmidt et al. [2011] analyzes Inexact Proximal Gradient (IPG), which is a special case of IPN when H is diagonal, and which requires a stronger condition on error ϕ.
- Jiang et al. [2012] also analyzes global rate for Proximal Newton, which requires much stricter conditions, i.e., $H_{k}-H_{k+1} \succeq 0$ (while providing FISTA-like rate).
- Byrd et al. [2013] demonstrate super linear local convergence rate of the proximal Newton-like method (with the same sufficient decrease condition as ours, but applied within a line search).
- probabilistic analysis of RCD within IPN framework
- efficient algorithm combining RCD with L-BFGS within IPN framework
- $O\left(\frac{n}{\epsilon} \log \left(\frac{1}{e}\right)\right)$ RCD steps (yes, we do need $n!$)
- the use of active-set can reduce n to nnz!
- and each RCD step takes constant time!
- and yes, we do notice super linear local convergence rate!
- provides theoretical guarantee to popular machine learning packages QUIC and LIBLINEAR.
- and a C/C++ implementation (with MATLAB and command line interface)
- generic subproblem solver
- generic objective interface
- specialized L-BFGS compact representation library
- can we apply L-BFGS to non-smooth function? (yes)
- can we combine L-BFGS with Randomized Coordinate Descent? (yes)
- is it faster than ISTA/FISTA? (yes)
- is it faster than L-BFGS with ISTA/FISTA? (yes)
- what is the complexity for each RCD step? (constant)
- how many RCD steps should we run per iteration? $(O(n \log (k)))$
- how many RCD steps do we need to achieve ϵ-accuracy? $\left(O\left(\frac{n}{\epsilon} \log \left(\frac{1}{\epsilon}\right)\right)\right)$

LHAC

```
$ ./lhac.cmd -h
# output
Usage: lhac [options] training_set_file or model_file (see option m)
options:
-m model_file : model_file existence indicator (default false)
    true -- read from model_file without training
    false -- train a new model from training_set_file
-p test file: apply model on the testing file
        and output the result to stdout
-d dense format : set matrix format dense or sparse (default 1)
    1 -- dense
    0 -- sparse
-l loss function : set type of loss function (default log)
    log -- logistic regression
    square -- least square
-c lambda : set the regularization parameter (default 1)
-a : pre-compute A^TA in least sqaure (default true)
-i : max number of iterations (default 1000)
-e epsilon : set tolerance of termination criterion
    final ista step size <= eps*(initial ista step size)
-v : set the verbose level (default 0)
    0 -- no output
    1 -- outer iteration
    2 -- sufficient decrease iteration
    3 -- coordinate descent iteration
```


LHAC

(c) a9a $(p=123, N=32561)$

(d) slices $(p=385, N=53500$)
tol $=10^{-7}$ (the y-axes on log scale).

(a) $S: 692 \times 692$

(b) $S: 834 \times 834$
tol $=10^{-7}$ (the y-axes on log scale).

tol $=10^{-7}$ (the y-axes on log scale).

tol $=10^{-7}$ (the y-axes on log scale).

Practical Inexact Proximal Quasi-Newton Method with Global Complexity Analysis

- arXiv:1311.6547
- detailed algorithm descriptions
- global convergence rate analysis under different scenarios
- experiment results

Thank you!

Questions?

