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Order dispatching is instrumental to the marketplace engine of a large-scale ride-hailing platform, such

as the DiDi platform, which continuously matches passenger trip requests to drivers at a scale of tens of

millions per day. Due to the dynamic and stochastic nature of supply and demand in this context, the ride-

hailing order-dispatching problem is challenging to solve for an optimal solution. Added to the complexity

are considerations of system response time, reliability, and multiple objectives. In this paper, we describe

how our approach to this optimization problem has evolved from a combinatorial optimization approach to

one that encompasses a semi-Markov Decision Process model and deep reinforcement learning. We discuss

the various practical considerations of our solution development and real-world impact to the business.
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Introduction

With the rising prevalence of smart mobile phones in our daily life, online ride-hailing platforms,

that is, mobility-on-demand systems as Alonso-Mora et al. (2017) discuss, have emerged as a viable

solution to provide more timely and personalized transportation service, led by such companies

as DiDi (www.didiglobal.com), Uber, and Lyft. Urban populations, which are more likely to seek

transportation alternatives to car ownership, now account for 59% (National Bureau of Statistics of

China 2019) and 82% (University of Michigan Center for Sustainable Studies 2019) of the total

population in China and the United States, respectively. These platforms also allow idle vehicle

vacancy to be more effectively utilized to meet the growing need for on-demand transportation, by
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connecting potential mobility requests to eligible drivers. The environment in which trip transac-

tions are facilitated and completed is the marketplace. As Figure 1 illustrates from a passenger’s

perspective, the marketplace allows a passenger to submit a trip request, the platform to provide

a quote, and an available driver to be matched to the trip. The efficiency of the mobility-on-

demand marketplace determines how quickly a trip request can be assigned and a passenger can

reach his/her destination. It largely hinges on the synergy of supply and demand distributions.

If demand exceeds supply locally, passengers would have to wait to receive a response to their

requests. Conversely, some drivers would be idle and their utilization would be low. Three major

levers are typically used to optimize marketplace operations: order dispatching (matching), driver

repositioning (routing), and pricing. Order dispatching and driver repositioning concern the sup-

ply distribution, while pricing controls the demand distribution. In this paper, we focus on the

optimization of order dispatching for single-passenger trips.

Order dispatching is instrumental in the marketplace engine of a large-scale ride-hailing platform

like DiDi, which continuously matches a huge number of trip requests to drivers every day. As Özkan

and Ward (2020, p. 31) state, “matching decisions have first-order importance for the ride-sharing

firms.” We can view order matching as another way of repositioning drivers by using trip orders,

and such repositioning movements are fairly deterministic (from the trip origin to the destination).

The spatiotemporal distribution of the drivers has a direct impact on the number of trip requests

that are matched, the waiting time for the passengers before they are picked up, and eventually

the number of orders that can be fulfilled. The efficiency of the marketplace largely hinges on these

important factors. Due to the dynamic and stochastic nature of supply and demand in this context,

the ride-hailing order-dispatching problem is challenging to solve for an optimal solution. Added

to the complexity are considerations of system response time, reliability, and multiple business

objectives.

In this paper, we first describe the ride-hailing order-dispatching problem in detail and formulate

it in mathematical optimization terms. Then, we describe the evolution of our approach to this
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Figure 1 We Show Sample Screenshots of the Process Involved in Requesting a Ride Using DiDi

Notes. The screenshot on the left shows a trip inquiry, including the origin and the destination. The screenshot on

the right shows a driver matched with a rider, the estimated travel distance, and the wait time. We have masked the

driver and vehicle identity information for privacy.

optimization problem from a myopic combinatorial optimization approach to one that encompasses

deep reinforcement learning for long-term optimization. Throughout the exposition, we also discuss

practical issues arising along the course of our implementation and production experience beginning

with the deployment. All the core technical sections have corresponding subsections within the

appendix that contain additional mathematical details.

Ride-hailing Order Dispatching (Matching)

In a ride-hailing marketplace, a passenger submits a ride request, including an origin and desti-

nation, which the system translates into GPS coordinates. The platform responds with a quote

for the trip. The passenger can either proceed to submit the order or cancel it. This is illustrated

by the screenshot on the left side of Figure 1. Upon submission, the order enters the dispatching

system, which attempts to assign it to an available driver following a particular dispatching policy.

The assignment time is typically set by the dispatching policy and cannot be earlier than the order

submission time. If no eligible driver is available at that moment, the order waits in the system

until the platform is able to match it to a driver. The passenger can cancel the order during this

period. If the passenger does not cancel the order, a driver is assigned to the order and can accept
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or decline the assignment. (Because drivers are motivated by various incentives that DiDi provides,

they seldom decline an assignment.) After accepting the assignment, the driver travels from his/her

current location to pick up the passenger. The system provides the estimated pickup time and

drop-off time to the passenger. (See the screenshot on the right side of Figure 1.) At this time, the

passenger can still decide to cancel the order, for example, because the estimated pickup wait time

is too long. After the driver picks up the passenger and completes the trip, the passenger pays the

charge, and the driver becomes available to be assigned to another order. The driver’s income is

a predetermined percentage of the actual price. The information about an order is available only

when it enters the system. Our problem focuses on finding an optimal online dispatching policy

for all orders, considering driver income and passenger waiting time for pickup.

Optimization Problem

Our optimization horizon is 24 hours. A trip order consists of the following information: origin

location in the form of GPS coordinates (latitude, longitude), destination location in the same

form, order submission time, trip assignment (to the driver) time, pickup time, drop-off time, and

price. Note that at dispatching time, the pickup time and drop-off time have to be estimated in

conjunction with the candidate driver through a separate module that predicts the estimated time

of arrival (ETA) and a module that estimates the charge. A driver is represented by the time that

driver last became available and the current spatiotemporal state of the driver. If the driver is in

service, then the last available time is set to infinity. An order is eligible to be assigned to a driver

if the trip assignment time is later than the last available time of the driver. An order-dispatching

policy π is a function that maps an order to a available driver. It is understood that if multiple

orders have the same dispatch assignment time, then the dispatching policy ensures that two orders

are not matched to the same available driver. If no driver is available, then the order is not matched,

and its dispatch request time is advanced to a new decision time when the set of free drivers is no

longer empty. We set the price to 0 if the order is cancelled before being fulfilled. A cancellation

after an order has been assigned is usually because of a long pickup distance or a long estimated

pickup wait time.
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We have both driver-centric and passenger-centric objectives. Our driver-centric objective is to

maximize the total income of the drivers on the platform. We defer the detailed formulation of the

objective in mathematical terms to the appendix. The passenger-centric objective is to minimize

the average pickup distance of all the assigned orders. This manages the passenger experience in

terms of the waiting time for pickup. The reason for preferring pickup distance over waiting time

is that pickup distance is deterministic at assignment time whereas pickup waiting time has to be

estimated through a separate ETA prediction module based on a number of factors, such as time,

traffic, and weather conditions. We monitor additional marketplace efficiency metrics in terms of

response rate and fulfillment rate, which also have an impact on the passenger experience with the

platform. Response rate is defined as the percentage of all submitted orders that are assigned to

a driver. Fulfillment rate is the percentage of all submitted orders that are eventually completed.

Again, the precise mathematical definitions of these metrics are in the appendix. We compare the

performance of different algorithms on these metrics in our evaluation process.

Production Requirements and Constraints

Because our solution is targeted for production deployment to match orders and drivers in the real

DiDi marketplace, the requirements and constraints of the production system have a significant

influence on our choice of a solution approach. For a large-scale dispatching system that serves

hundreds of cities, computational efficiency and system reliability are the foremost requirements

for any solution. This means that any implementation of neural network inference has to be fast,

the service that runs the solution algorithm and is used by the production system has to sustain a

high query-per-second (QPS), and the training and serving pipeline has to be of limited complexity.

A real-world system needs to be sufficiently flexible to accommodate changing business require-

ments, some common examples of which are matching eligibility, order priority levels, and multiple

objectives. These requirements are frequently rule based and have to be applied as postprocessing

functions, if not already explicitly accounted for in the model.
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Related Works

The order-dispatching (matching) problem in the ride-hailing domain is related to several classical

NP-hard combinatorial optimization problems in the operations research literature. The traveling

salesman problem (TSP) dispatches one vehicle to visit multiple known destinations before coming

back to its home depot. The vehicle routing problem (VRP) generalizes the TSP to a fleet of

vehicles. The order-dispatching problem that we consider in this paper is most closely related to

the pickup-and-delivery problem (PDP) or the dial-a-ride problem (DARP), where vehicles are

dispatched from and return to a central depot to satisfy a set of transportation requests with

single origins and destinations. The ride-hailing order-dispatching problem differs from a DARP

in that there is no central depot, and the trip requests are not all known in advance. Hence, the

order-dispatching problem is a dynamic problem, in contrast to classical static problems.

Order dispatching has been recognized as an important research topic in ride-sharing applica-

tions. A number of works study the optimization problem of dynamic matching (see Özkan and

Ward 2020 and the references therein), as opposed to static matching in some early works, for

example, nearest-driver matching (Bailey and Clark 1987). Many of them assume time homoge-

neous driver and order arrival rates. Özkan and Ward (2020) consider time-varying parameters

but assume that those arrival rates are given, while Miao et al. (2016) propose a receding horizon

control approach. Methods depending on estimates of future demand and supply parameters are

generally sensitive to the errors in predictions. Kümmel et al. (2016) and Yan et al. (2019) study

order matching with time windows to batch drivers and orders.

Recently, machine learning methods with deep neural networks have been used as new approaches

to the TSP and the VRP, under an encoding-decoding framework (Bello et al. 2017, Nazari et al.

2018, Vinyals et al. 2015). Reinforcement learning has been applied to the driver routing problem

to increase a driver’s prospect of getting an order. Verma et al. (2017) use a Monte Carlo learning

approach, and Shou et al. (2020) use dynamic programming to learn the state-action value function.

Oda and Joe-Wong (2018) employ a deep Q-network (DQN) in a distributed setting to account

for the multiagent nature of the fleet management problem. A Q-network is a state-action value

function represented by a neural network.
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Solution Approach

Our two primary objectives are not exclusive. The total income of the drivers on the platform

ties closely to the total in-service time (i.e., time during which a driver is serving an order) of the

drivers. Of course, because the trip price typically varies depending on the time the trip takes,

the relationship between income and in-service time is not linear. Nevertheless, maximizing the

total in-service time helps increase the total income of the drivers. Assuming that the number of

drivers and their individual (online) available hours are fixed a-priori, maximizing the total in-

service time is equivalent to minimizing the sum of pickup wait time and idle time of the drivers,

because the total time available to the drivers is fixed. Reducing pickup wait time also decreases

the cancellation probability of an order, which has a direct impact on the realization of the trip.

We started with a simple combinatorial optimization approach, which sets the foundation of our

framework and acts as a policy generator. To develop an approach that optimizes over a longer

horizon, we incorporated reinforcement learning into our solution framework by developing tailored

algorithms to compute the long-term value of a given dispatching policy, which would in turn guide

the policy generator. As we will discuss later, our framework falls under the category of generalized

policy iteration, as Sutton and Barto (2018) discuss.

Combinatorial Optimization

Upon an order’s arrival, dispatching it to the nearest available driver is a simple common dispatch-

ing method (Özkan and Ward 2020, Yan et al. 2019), but it is the most myopic among all the

alternatives. A basic step to tackle the stochastic nature of demand and supply in the ride-hailing

marketplace is to create dispatching windows, where open orders and available drivers are pooled

and matched simultaneously (Kümmel et al. 2016, Yan et al. 2019). Figure 2 illustrates this process.

The length of a dispatching window ∆t is tunable, typically a few seconds. Batching orders and

drivers enables slightly more ‘global’ optimization at the expense of longer order response time.

Within a dispatching window, there are n open orders and m available drivers denoted by Odisp

and Xdisp, respectively. Often, n >m, which means that a subset of Odisp will not be matched to
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Figure 2 We Illustrate the Process of Order Dispatching with Batch Windows

any driver and will have to wait for the next window. Conversely, a subset of Xdisp drivers will

be left idle until the next window. The orders within a batch window are held until the end time

of the window for matching. We generate the dispatching policy by solving a linear assignment

problem defined by Problem (3) in Combinatorial Optimization in the appendix.

Considering various business feasibility constraints, the basic production baseline method has

been to set the edge weight to the negative of the pickup distance for the potential match of an

order and a driver. In particular, the edge weight is not set to the price, as one might think is

intuitive for total income maximization. The reason is that the solution would become to rank

Odisp in decreasing order of prices and assign any drivers to the top orders when n>m, which may

result in a longer pickup distance (compared to distance minimization) and short trips that the

system ignores repeatedly, thus creating negative customer experiences.

Compared to the nearest-driver matching strategy, combinatorial optimization with batch win-

dows is able to produce a more optimal dispatching policy in terms of pickup distance. However,

the batch window length typically has to be small so as not to impact passenger experience. The

myopic nature of the solution means that there was still room for further optimization. Özkan and

Ward (2020) use an example to illustrate potential efficiency loss due to lack of visibility of the

demand in the next batch window.



Qin et al.: Order Dispatching via Reinforcement Learning
Article submitted to Interfaces; manuscript no. (Please, provide the manuscript number!) 9

Although the above combinatorial optimization approach is myopic, it has a number of desirable

properties that makes the framework well suited for the production system. First, the optimiza-

tion algorithm has been well studied in the literature, and fast implementations are available; for

example, Lopes et al. (2019) discuss meeting the QPS requirement of a production environment.

Second, this method is sufficiently flexible to accommodate various specific business requirements,

which we discuss below in the Production Requirements and Constraints section by adjusting the

edge weights.

Semi-Markov Decision Process (MDP) Model

To further improve the solution described above, it is desirable to consider the longer-term impact

of the current matching decisions, because they affect the availability and distribution of the drivers

in the future time steps. The order-dispatching system described in the Optimization Problem

section is a cooperative multiagent system, with the drivers as the agents. The number of agents

poses a big challenge for solving such a multiagent problem because the joint action space quickly

becomes intractable. An additional complexity is that the eligible action space (the set of orders

to be matched) for each agent changes over time. Holler et al. (2019) demonstrate the challenge of

directly learning a global dispatching policy of a system-centric agent. Hence, to develop a practical

solution for production, we have taken a driver-centric view of the problem.

The temporal dependency of the dispatching decisions, as discussed in the Optimization Problem

section above, suggests modeling the dispatching trajectory of each driver as an MDP, which

naturally models a sequential decision process that aims to optimize a long-term objective (Xu

et al. 2018). In this model, each driver is an independent agent. The state s of the driver consists

of location and time, both of which can be discretized: the driver’s location is represented in a

hexagonal grid system as illustrated in Figure 3, and time is represented by buckets, typically of

a few minutes. A state is a terminal state if its time component is the end time of a day, or an

episode.

The action a of the driver (or rather the action that the system imposes on the driver) is to

fulfill a particular order, including to idle or to cruise without a passenger. The reward r of an



Qin et al.: Order Dispatching via Reinforcement Learning
10 Article submitted to Interfaces; manuscript no. (Please, provide the manuscript number!)

Figure 3 The Graphic Shows a Sample Map (Obtained from Google Maps) Overlaid with a Hexagon Grid System

action executed on a given state is simply the price of the order, which can be zero if the driver is

idle. The state transition dynamics are that after the driver in the current spatiotemporal bucket

completes an order, the driver’s state changes to the bucket corresponding to the destination, and

the driver receives a reward, which equates to a fixed percentage of the price, or equivalently, the

amount of the price. An idling or empty-car cruising action is equivalent to an order with a zero

price in state transitions. Hence, both the transition and reward are deterministic, given s and a,

whereas the action space at s is stochastic. (See the Semi-MDP Model in the appendix for more

details on this aspect.) The objective of this MDP is to maximize the cumulative reward of the

agent (driver) within an episode. It also follows that the objective function of the problem is simply

the sum of the objectives of this driver-centric MDP over all the drivers.

This model contains temporally extended courses of actions, so it is in fact a semi-MDP as Tang

et al. (2019) describe, and the actions are options (Sutton et al. 1999), which we also denote by o.

This is consistent with its meaning because an option is a trip order, with staying idle as a zero-

distance trip. See the The Optimization Problem in the appendix for the mathematical definition of

a trip order. Most of the MDP relevant theories can be carried over with only minor modification

(Sutton et al. 1999). The reward r accumulated over an option whose trip portion spans over

multiple units of time needs to be properly discounted. Refer to Equation (7) in the appendix for

the precise definition. The policy of the agent, πd is a function that maps the driver’s state to an

option. We note that in practice, the system executes a centralized dispatching policy π through,
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for example, solving a linear assignment problem. Nevertheless, π can be distilled into πd through

a dual relationship.

Similar for an MDP, the state-value function V πd(s) of the semi-MDP is defined as the long-term

discounted cumulative reward received throughout the options given s, following πd. Recall that

the state space is discretized by the hexagon grid system and time buckets. Hence, V πd(s) can be

represented in a tabular form in this case. Similarly, the state-option value function Qπd(s, o) is

defined as the long-term discounted cumulative reward received throughout the options by following

πd, given current state s and executing option o on s.

Tabular Temporal-Difference Learning

With the semi-MDP model that we discuss in the previous section, our first reinforcement learning

(RL) approach (Xu et al. 2018) employs the generalized policy iteration framework (Sutton and

Barto 2018) as illustrated in Figure 4. At the policy evaluation stage, V πd is learned through

tabular temporal-difference (TD) learning (Sutton 1988) (TD(0) to be exact), using the trip and

idle movement data for all drivers collected for the training period, for example, a month. We can

interpret V πd as the long-term state value (measured up to the end of the day) of a generic driver

at a given location and time. The tabular scheme follows the spatiotemporal grid system defined in

the previous section. TD(0) learns the value function by bootstrapping, using the estimate from last

iteration to construct the target for update. Algorithm 1 in Tabular Temporal-Difference Learning

in the appendix lays out the key steps of TD(0), which we applied to the semi-MDP in the previous

section. The update term in the inner loop is the TD-error for the transition experience, and α is

the step size.

The improved system dispatching policy π′ with respect to V πd is generated during the matching

stage through the combinatorial optimization discussed above. The edge weights are computed as

the sample (predicted) advantage (Baird 1993) of each possible match between an order and a

driver using V πd . (See Equation (13) in the appendix.) The driver-centric policy πd is not explicitly

computed and used. Instead, the driver-centric value function is used to generate the system policy
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Figure 4 The Graphic Illustrates the Generalized Policy Iteration Framework for Order Dispatching

Note. This framework includes policy evaluation (TD-learning and deep value networks), matching (linear assignment

with the Kuhn-Munkres algorithm), batch windows of ∆t, and data (trips and idle cruising).

π. We emphasize that since the state-value function can be learned offline, the complexity of online

serving remains the same as in the case of the myopic distance-based greedy method, that is,

solving a linear matching problem.

The advantage can be viewed as the relative change in the long-term value with respect to the

current spatiotemporal point of the driver, if the order is assigned to that driver. The generated

policy π′ is collective greedy with respect to V πd (through the advantage). The sample advantage

admits the same form as the TD-error. The edge weight penalizes long pickup distance because

increasing estimated en route time decreases the advantage. The new policy is guided by the

independent long-term option advantages of the drivers to approximately maximize their total

income while discouraging long pickup wait time for the passengers. The frequency of policy update

is a tunable variable, which can vary from days to weeks. We formalize our RL framework for

dispatch in Algorithm 2 in the appendix. The framework consists of two stages, policy evaluation

and policy improvement, as described above.

Remark 1. Using the advantages yields the same solution as using the state-option value (which

may appear to be a more natural definition of an assignment edge) when every driver is matched
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to an order within a dispatching window. When the number of available drivers exceeds that of

unserved orders within a batch, using an advantage encourages matching a driver whose current

state has a lower long-term value than others, while keeping the total value of the solution the

same. This is a desirable property because it promotes fairness and helps improve overall driver

experiences on the platform, in addition to the ability of penalizing long pickup distances to ensure

good passenger experiences.

Deep Reinforcement Learning

Tabular TD-learning has enabled us to improve the system dispatching policy with respect to

the average long-term values of individual drivers, but it also has several limitations. (1) Tabular

methods suffer from the curse-of-dimensionality. As the number of features to represent the agent

state increases, the table size for the value function quickly becomes intractable. (2) The tabular

TD method is susceptible to training data sparsity (see Figure 5) because it is unable to generalize

in a principled way to spatiotemporal states that have not been visited by any driver in the past.

(3) Tabular learning methods do not support the mechanism for knowledge sharing among models

of different cities. Meanwhile, using merely spatiotemporal information is not sufficient to capture

the complex nature of the driver state. The state space needs to be augmented to enable policies

to be more responsive to real-time demand and supply conditions and to better accommodate

driver heterogeneity. The dispatching system has to support potentially hundreds of cities with

very different data availability. The training method thus needs to be able to leverage knowledge

sharing among models of different cities to reduce training time and improve learning quality.

With all these considerations in mind, we developed a deep neural network-based policy evaluation

algorithm for our generalized policy iteration framework.

The use of a neural network, a nonlinear value function approximator, in value iteration or Q-

learning poses known convergence issues (Sutton and Barto 2018). We first demonstrated that a

simple neural network model trained within the DQN (Mnih et al. 2015) framework with a set

of practical heuristics works effectively for a single-driver dispatching task and transfer learning
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Figure 5 The Graphic Shows a Plot of Trip Counts by Hexagonal Grids Over a Day

Note. The darkest blue color indicates single-digit trip counts; zero count is represented by an absence of color.

(Wang et al. 2018). Unlike DQN, which takes only the state as input and has multiple outputs

corresponding to each action, our Q-network takes both state and option as input, because the

option (trip) space is essentially continuous and is huge if discretized. Transfer learning across cities

is facilitated by a new dual-pathway network architecture that distinguishes between transferrable

and nontransferrable network components. This architecture is also used later in our new deep

value-network (Tang et al. 2019). The key heuristics to ensure successful training include adopting

Double DQN (Van Hasselt et al. 2016), sweeping through terminal state transition experiences

more frequently from the replay buffer, and augmenting the real trip training data with simulated

experience data.

Because the option is part of the input, the Q-network also faces the significant challenge of

data sparsity in both state and option spaces. In addition, the matching-trip price and pickup

distance influence the network output in a less explicit way than using the state value function. We

subsequently developed the cerebellar value-network (CVNet) (Tang et al. 2019) for learning the

driver-centric state value function. The development of a CVNet for multidriver order dispatching

requires several innovative features in network design and training.

The state values of similar geographical locations at a given time tend to be similar, but due to

different densities of the transportation network and natural geographical features, the grouping
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size of the spatial points can vary. Hence, neither a single-resolution grid system nor the raw GPS

coordinates are optimal for state representation and learning. CVNet quantizes the geographical

space through hierarchical coarse-coding using a multiresolution hexagonal grid system (Sahr 2011,

Brodsky 2018, Uher et al. 2019). State representation is then constructed by combining a Cerebellar

Model Arithmetic Computer (CMAC) (Albus 1971) with an embedding matrix. We refer the reader

to Deep Reinforcement Learning in the appendix for further details on the network architecture of

CVNet. The overall network and training architecture is illustrated in Figure 6.

During the matching stage, edge weights are still computed through Equation (13) to generate

the dispatching policy. CVNet can be easily distilled into a tabular function form, for example, by

sampling origin points from each grid. Hence, CVNet is fully backward compatible with tabular

policy evaluation methods within our framework, Algorithm 2. Figure 7 shows two plots of the

CVNet output over the grid map of a major Chinese city before morning and evening rush hours.

The darker the color, the higher is the value. It is easy to see the different patterns that CVNet

captures at these two distinctive times of the day: Before the morning rush hour, the values at

suburb areas are higher for an average driver due to the availability of many passengers going to

the city center, which subsequently would be an origin of high demand. Before the evening rush

hour, the city center has higher values as the trip pattern reverses. The trips during the rush hour

largely determine the values of the locations since the time is close to the end of the day (episode).

Transfer Learning

One of the key advantages of employing deep reinforcement learning is to allow leveraging knowl-

edge learned from one city in training to improve training efficiency and quality for other cities.

For transfer learning of the models among different cities, we further refined our neural network

into a dual-pathway architecture (Wang et al. 2018, Tang et al. 2019), where there are two trains

of network layers corresponding to location features (l) and transferrable features such as time

(µ), spatiotemporal displacement and local supply-demand contextual features (v). The two path-

ways are connected thru lateral connections. Figure 8 illustrates this network architecture, which
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Figure 6 The Diagram Shows the CVNet Architecture as Tang et al. (2019) Discuss

Note. The left side and center of the diagram illustrate the hierarchical coarse-coding using a multiresolution hexag-

onal grid system and cerebellar embedding. q1, q2, and q3 represent the quantization functions, and θM denotes the

parameters of the embedding matrix, defined in Deep Reinforcement Learning in the appendix.

Figure 7 We Show Plots of the CVNet Values in a Major Chinese City Before Morning (Left) and Evening

(Right) Rush Hours

is called the Correlated Feature Progressive Transfer (CFPT) architecture. Once the network for

the source city is trained, the transferrable blocks of the network are transplanted to the right

positions in the target network, the nontransferrable blocks of which continue to be updated by

the new data from the target city.

Performance Evaluation

The primary metrics of interest for evaluation are defined in the Optimization Problem subsection

in the appendix. We focus on the recount of the empirical evaluation process in this section. For
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Figure 8 The Diagram Shows the CFPT Architecture for Transfer Learning (Tang et al. 2019)

Notes. l, µ, and u are the location, time, and contextual features, respectively. The blue blocks in the upper pathway

of the target network are the network layers specific to the target city. The green blocks in the lower pathway of both

networks are transferrable blocks between the source and target cities. W (t) and U (c) are the network weights of the

nontransferrable blocks and the lateral connections, respectively. The parts of the target city network with dotted

lines (frozen) are not updated during training.

detailed experiment results, we refer the reader to Xu et al. (2018), Wang et al. (2018), and Tang

et al. (2019).

Simulation

Simulation is an integral part of RL research. Typically, agents are trained and evaluated in the

same environment, for example, classical toy games (Tsitsiklis and Van Roy 1996), Atari arcade

games (Mnih et al. 2015, Schulman et al. 2017), and chess games (Silver et al. 2016), which are

all simulations. For industrial applications, the learned policy has to be deployed in real-world

production systems, which are usually much more complex and stochastic in system dynamics.

We have thus adopted the approach of learning the value function from real trip and trajectory

data instead of a simulation environment, and our approach works well with the generalized policy

iteration framework. In our setting, we use simulation for evaluating the relative performance of a

particular policy. Although we have done careful calibrations against real-world data, the ultimate
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goal of our simulator development is not to exactly replicate the real-world marketplace at the

fine-grained level (which is hard to achieve). Instead, it is more important for the simulator to

capture the basic dynamics of the interactions of orders, drivers, and the dispatching system.

Our simulation runs by replaying historical passenger orders by days and simulating driver

trajectories and behavior with a given dispatching policy. Similar practices have been commonly

followed in the literature (Alonso-Mora et al. 2017, Verma et al. 2017). The order replay mechanism

allows straightforward construction of an ‘out-of-sample’ test environment for evaluation. With

the simulation environment, we are able to perform hyper-parameter searches, to compare the

performance of different algorithm variants within exactly the same supply-demand context, and to

demonstrate the effectiveness of transfer learning. Although the supply-demand context can vary

significantly for different cities and days, our simulation results show that the RL-based methods

consistently outperform the pickup distance minimization baseline with a significant margin. The

generalized policy iterations with CVNet achieves the highest total driver income among all the

benchmarked methods and exhibits the most robust performance, especially compared with DQN

(Tang et al. 2019).

Production

The combinatorial optimization approach has been a core production component that serves order

dispatching over all the markets that DiDi covers. It is a high-performance implementation that

supports more than 10 billion rides each year from over 550 million passengers, with low latency

and high reliability. It also serves as a basis module in our generalized policy iteration framework.

The modular design of our approach allows for relatively easy deployment of different solution

variants. Both the CVNet and the tabular TD(0) models are trained and updated offline with a

Spark-based extract-transform-load (ETL) data pipeline. The output of the trained models are then

served online within the combinatorial optimizer to allow it to dispatch orders with consideration

of long-term values.

We deployed and tested the reinforcement learning-based solutions in production in a number of

pilot cities. Unlike AB tests for many other user-based strategies, which can be done by dividing
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the experiment’s user traffic into two random groups, comparing the performance of two order-

dispatching policies is less straightforward and is also an area of research. The key difference is

that two dispatching policies cannot be executed at the same time in a given city because it is not

possible to completely separate the two groups with a single ride-sharing platform. Cross-group

matching of orders and drivers would inevitably happen and the groups would interfere with each

other. We adopted the mechanism of time-slice rotation. In an AB test of this type, a day is sliced

into intervals of H hours, H ∈ (0,24]. Algorithms A and B are executed on the platform over

alternating intervals. The order of the two algorithms are reversed on alternating days. At any

time, only one algorithm is running for matching the orders and drivers in the system. In our AB

tests, H = 3. The number of days within the experiment period is typically chosen to be even.

Metrics of interest are collected for each algorithm over the periods that it runs. An advantage

of this AB test mechanism is that it allows two dispatching algorithms to run close to parallel

while only one algorithm is in control at a time. For methods having a long optimization horizon,

a potential problem is that the benefit of Algorithm A’s actions may be realized in Algorithm B’s

intervals. On the other hand, if we set H to be much longer, for example, H = 24, then accounting

for the effects of test environment changes over different days would be a separate line of research.

Impact

DiDi initially adopted a different mode for order dispatching: Each order was broadcast to all

available drivers within a predefined radius. The first driver in this group to accept the order would

receive it (Zhang et al. 2017). This mechanism was then replaced by centralized order dispatching

with batching, which aims to improve marketplace efficiency by utilizing global supply and demand

information. Research on RL-based methods began in 2017. As of this writing, this initiative of

using quantitative approaches from operations research and machine learning is in the third year

and is still ongoing.

After successful AB tests (with time-slice rotation as we described in the previous section)

against the distance-based combinatorial optimization approach, the generalized policy iteration
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framework with TD(0) has been in production in more than 20 major cities in China (Xu et al.

2018). By design, CVNet tends to have better generalization performance and is less susceptible to

data sparsity. Subsequently, CVNet was deployed in production for AB tests in several additional

cities and showed significant improvement (0.5%− 2%) against the production baseline in terms

of total driver income, order response rate, and fulfillment rate (Tang et al. 2019). The benefits

accrued from the evolution of the order-dispatching algorithm are profound, allowing millions of

passengers to have their requests matched faster. The quantitative impact could translate into the

equivalence of hundreds of thousand orders per day across the entire market in China. To the best

of our knowledge, this is the first major successful application of an RL-based optimization method

in the ride-hailing domain.

Works in Progress and Future Directions

We are pursuing a number of research projects to develop and deploy advanced reinforcement

learning methods for marketplace optimization, spanning order dispatching, driver repositioning,

and carpooling. We are further working on an end-to-end deep RL algorithm to unify dispatching

and repositioning (Holler et al. 2019). We briefly discussed the challenges of developing a large-scale

multiagent RL approach for order dispatching. Our initial attempt to tackle the problem has yielded

some promising results, albeit within a simplified environment (Li et al. 2019). Beyond single-

passenger rides, we are also exploring applications of RL in the multiple-passenger (carpooling)

setting (Jindal et al. 2018).

Appendix
The Optimization Problem

To facilitate the formulation and statement of the optimization problem, we summarize the quantities in the

paper and their notation in Table 1.

Our optimization horizon is 24 hours. A trip order can be summarized as o := {l̃o, lo, ld, tr, tm, t̃o, to, td, p}.

The tilde for l̃o and t̃o indicates that they have additional dependencies on the assigned driver. We use i to

index orders as in o(i). A driver x is represented by x := {tf , lx, tx}, where tf is the time when the driver

last became available, and (lx, tx) is the current spatiotemporal state of the driver. If the driver is in service,



Qin et al.: Order Dispatching via Reinforcement Learning
Article submitted to Interfaces; manuscript no. (Please, provide the manuscript number!) 21

Table 1 We List the Core Mathematical Notation We Use in this Paper

Symbol Meaning

o order object

lo trip origin in coordinates

ld trip destination in coordinates

p actual trip price

p̂ trip price quote

tr order submission time

tm trip assignment (to the driver) time

t̃o driver acceptance (of the assignment of order o) time

l̃o driver’s location at assignment (of order o) acceptance

t̂o estimated pickup time

t̂d estimated drop-off time

to actual pickup time

td actual drop-off time

Odisp set of open orders within a batch window

x driver object

tf time when driver last became available

(lx, tx) current spatiotemporal state of driver

Xdisp set of available drivers within a batch window

Note. Notations not listed in this table are explicitly defined and explained in the paper when they are presented.

tf =∞. The duration of the trip o(i) is τo
(i) := td

(i)− to(i). The time that the driver spends en route to pick

up the passenger is τe
(i) := to

(i)− t̃(i)o . The total time for fulfilling the order is thus τo
(i) + τe

(i) = td
(i)− t̃(i)o .

An order o is eligible to be assigned to a driver x if tm(o)≥ tf , where tm(o) is the tm component of o (and this

notational convention applies to the other quantities as well). For simplicity, we shorten the notation tm(o(i))

to tm
(i). We use j to index drivers as in x(j). We denote the set of free drivers by X(t) := {x(j) | tf (j) ≤ t}.

An order-dispatching policy π is a function that maps an order o to a free driver x∈X(tm(o)), that is,

π(o) : o→ x∈X(tm(o)). (1)

It is understood that if multiple orders have the same dispatch assignment time tm, then the dispatching

policy π ensures that two orders are not matched to the same free driver. If X(tr(o)) = ∅, then the order is

not matched, and its dispatch request time is advanced to the new decision time until X(tr(o)) is nonempty.
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We set the price p= 0 if the order is cancelled before being fulfilled. A cancellation after an order has been

assigned is usually because of a long pickup distance or a long estimated pickup wait time t̂(i)o − t̃(i)o ), defined

by d(l̃(i)o , lo
(i)), where the function d returns the travel distance between two locations. Hence, p is a function

of π, and we can make it explicit by writing p(π).

Let the set of orders created by passengers throughout a day be {o(i)}Ni=1. We have both driver-centric

and passenger-centric objectives. Our driver-centric objective is to maximize the total income of the drivers

on the platform. By definition, the per-order income of a driver is r := pθ, where θ is a constant independent

from the order. Hence, the optimization problem is

max
π

J(π) :=

N∑
i=1

p(i)(π). (2)

The passenger-centric objective is to minimize the average pickup distance of all the assigned orders,

1
N+

∑N

i=1(d(l̃(i)o , lo
(i)))

1(l̃
(i)
o 6=∅)

, where N+ is the number of assigned orders. This manages the passenger expe-

rience in terms of the waiting time for pickup. Response rate is defined as the percentage of all submitted

orders that are assigned to a driver, N+

N
. Fulfillment rate is the percentage of all submitted orders that are

eventually completed,
∑N

i=1 1(p(i)(π)>0)

N
.

Combinatorial Optimization

Within a dispatching window, we set tm(o) = tdisp,∀o ∈Odisp, where tdisp is the end time of the window. A

weighted bipartite graph G := 〈Odisp,Xdisp〉 is created with n order nodes and m driver nodes. The edges are

pruned first by the dispatch radius; for each order, the edges to those drivers that are farther from a predefined

threshold are eliminated. The edge weight wox determines the objective of interest. The dispatching policy is

generated by solving a linear assignment, Problem (3), based on G, using the Kuhn-Munkres (KM) algorithm,

also known as the Hungarian algorithm (Kuhn 1955).

max
z

∑
o∈O

∑
x∈X

woxzox (3)

s.t.
∑
x

zox ≤ 1, ∀o∈Odisp,

∑
o

zox ≤ 1, ∀x∈Xdisp,

zox ∈ {0,1}, ∀o∈Odisp, x∈Xdisp.
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With the optimal solution z∗, the dispatch policy for the current window can be derived by setting

π(o) = x, ∀o∈Odisp, x∈Xdisp, z
∗
ox = 1. (4)

We define an operator Π(w) : w→ π that maps the input weights w to a policy via Equations (3) and (4).

Since π is a system-level dispatching policy, it requires not only the order of concern as input, but Odisp and

Xdisp as well. For notational simplicity, we keep π in the current form.

Semi-MDP Model

In this model, each driver is an independent agent. The state s of the driver consists of location and time

(l, t), both of which can be discretized: the driver’s location is represented in a hexagonal grid system as

illustrated in Figure 3, and time is represented by buckets, typically of a few minutes. A state is a terminal

state, if t= T where T is the end time of a day, or an episode. We denote the (hexagonal grid index, time

bucket index) pair of location l and time t by g(l, t). The hexagonal grid system is commonly used in mapping

systems because it has a desirable property that the Euclidean distance between the center points of every

pair of neighboring grid cells is the same, and hexagonal grids have the optimal perimeter/area ratio, which

leads to a good approximation of circles (Hales 2001). The action a of the driver (or rather the action that

the system imposes on the driver) is to fulfill a particular order (from the open orders within a matching

window), or to idle. The reward r of an action executed on a given state is simply the price of the order p,

which can be zero if the driver is idle. The state transition dynamics are that after the driver at s= g(l̃o, t̃o)

completes an order o, the driver’s state changes to s′ = g(ld, td), and the driver receives a reward of r = p.

Hence, both the transition and reward are deterministic, given s and a. A sample trajectory of the driver

in an episode is shown in Figure 9. The stochasticity of this MDP lies in the future demand, which defines

the feasible action set at each state. Hence, strictly speaking, our MDP is one with stochastic action sets

(SAS-MDP) (Boutilier et al. 2018). Regular learning algorithms like Q-learning, DQN, and policy evaluation

methods still work the same in this case using batch data, as long as updates are made over realized available

actions. The objective of this MDP is to maximize the cumulative reward of the agent (driver) x within an

episode, Jx =
∑K

k=1 rtk , where tk is the time of the k-th action, and tK is the time of the last action before

T . For notational simplicity, we subsequently may just use rk for rtk . Since all idle actions yield zero reward,

we have

Jx(π) =

K∑
k=1

rtk =

N∑
i=1

p(i)(π)

∣∣∣∣∣
π(o(i))=x

. (5)
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Figure 9 The Graphic Shows a Sample Driver Trajectory

Notes. The first two legs correspond to a transition for order fulfillment (i.e., pickup plus actual trip). The last leg

is a transition for idle cruising. The definitions of the notation can be found in The Optimization Problem in the

appendix.

From Equation (5), it follows that

J(π) =
∑
x

Jx(π). (6)

This model contains temporally extended courses of actions, so it is in fact a semi-MDP as Tang et al.

(2019) describe, and the actions are options (Sutton et al. 1999), which we also denote by o (and is consistent

with its meaning). Most relevant theories of MDP can be carried over with only minor modification (Sutton

et al. 1999). The reward r accumulated over an option whose trip portion spans over τo units of time needs

to be properly discounted:

r̂= γτe
(
r

τo
+ γ

r

τo
+ · · ·+ γτo−1

r

τo

)
=
r(γτo − 1)γτe

τo(γ− 1)
, (7)

where γ ∈ [0,1), τo ≥ 1 and assuming that the reward is accumulated uniformly over time. Here, we have also

taken into account the time that the driver spent en route to pick up the passenger, τe. The policy of the

agent πd is a function that maps the driver’s state to an option, that is, πd(s) : S→O, where S and O are

the state and option spaces, respectively. Note that the system dispatching policy π has a different order of

input and output, because it is a system-view policy and it is more notationally convenient to define it that

way. Nevertheless, π can be distilled into πd through

πd(s(x)) = o(i) iff π(o(i)) = x. (8)
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The episode trajectory data of driver x is P (x) = {st0 , o0, ro, · · · , stk , ok, rk, stk+1
, · · · , stK}. We use the notation

ok for the k-th option at time tk to differentiate it from the indexing for orders o(i). The option ok may be

to idle in addition to taking a trip.

Similarly for an MDP, the state-value function V πd(s) of the semi-MDP is defined as the long-term

discounted cumulative reward received throughout the options given s, following πd:

V πd(s) :=E

[
K−k∑
i=1

γ(tk+i−tk−τok−τek )R̂k+i

∣∣∣∣∣stk = s

]
, (9)

where R̂ is the random variable whose realized value is r̂. The time component for the discount factor in

front of R̂k+i is because the reward R̂k+i starts to be collected after the k-th transition is completed. The

Bellman equation for πd is

V πd(s) =EOdisp(s)∼O

[
R̂(s,πd(s;Odisp(s))) + γ(τe+τo)V πd(s′)

]
, (10)

where Odisp(s) is the set of open trip orders for dispatching (i.e., the action set) at s, and O is the corre-

sponding demand distribution. We made the dependency of πd on Odisp explicit by writing πd(s;Odisp(s)).

Following Boutilier et al. (2018), we can define the corresponding embedded semi-MDP by augmenting the

state s with the realized action set Odisp(s), s̃ := (s,Odisp(s))∈ S̃ and denoting the corresponding policy π̃d.

Then we can recover the standard Bellman equation for π̃d,

V π̃d(s̃) =Es̃′∼S̃

[
R̂(s̃, π̃d(s̃)) + γ(τe+τo)V π̃d(s̃′)

]
, (11)

where S̃ is the conditional distribution of the state s̃′ given the action π̃d(s̃). In practice, we use TD-learning

to learn V πd(s) from a collection of realized trajectories.

Similarly, the state-option value function Qπd(s, o) is defined as the long-term discounted cumulative

reward received throughout the options by following πd given current state s and executing option o on s:

Qπd(s, o) :=E

[
K−k∑
i=1

γ(tk+i−tk−τok−τek )R̂k+i

∣∣∣∣∣stk = s, ok = o

]
. (12)

Tabular Temporal-Difference Learning

At the policy evaluation stage, V πd is learned through tabular temporal-difference (TD) learning (Sutton

1988) (TD(0) to be exact) using {P (x)}x(J)

x=x(0)
, the trip and idle movement data for all drivers (from driver

x(0) to x(J)) collected for the training period, for example, a month. Algorithm 1 lays out the key steps

of TD(0) applied to the semi-MDP in the previous section. The update term r+ γV πd(s′)− V πd(s) is the

TD-error for the transition experience (s, o, r, s′), and α is the step size.
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Algorithm 1 TD(0) for Driver Semi-MDP

Require: {P (x)}x(J)
x=x(0)

for the training period collected by π, α∈ (0,1]

Ensure: V πd(s) = 0, ∀s whose time-bucket contains T .

Initialization: V πd(s) = 0, ∀s∈ S

for each episode P do

for each transition (s, o, r, s′) do

V πd(s)← V πd(s) +α
[
r̂+ γ(τo+τe)V πd(s′)−V πd(s)

]
end for

end for

The improved system dispatching policy π′ with respect to V πd is generated by the operator Π(w) during

the matching stage through the combinatorial optimization discussed earlier. The edge weights are computed

as the sample (predicted) advantage (Baird 1993) of each possible match between o(i) and x(j), using V πd :

wo(i),x(j)(V
πd) := p̂(i) + γ(τ̂

(i)
o +τ̂

(i)
e )V πd(g(ld

(i), t̂
(i)
d ))−V πd(s(x(j))), (13)

with the understanding that p̂(i) is discounted as in Equation (7). The advantage, Equation (13), can be

viewed as the relative change in the long-term value with respect to the current spatiotemporal point of the

driver x(j), should order o(i) be assigned to x(j). The generated policy π′ = Π(w(V πd)) is collective-greedy

with respect to V πd (through the advantage). The sample advantage admits the same form as the TD-error.

We observe that the edge weight, Equation (13), penalizes long pickup distance in that both the immediate

reward p̂(i) (see Equation (7)) and the discount factor for the value term of the destination would decrease

with increasing estimated en route time τ̂ (i)e , thus lowering the advantage. The new policy is guided by the

independent long-term option advantages of the drivers to approximately maximize their total income while

discouraging long pickup wait times for the passengers. We formalize our RL framework for dispatching in

Algorithm 2.

Remark 2. The goal of our framework is to maximize the total cumulative reward. Hence, it is natural

to make the policy generated by Π collective-greedy with respect to the state-option value Qπd , that is,

using wo(i),x(j) = Qπd(s(x(j)), o(i)) in the combinatorial optimization, Equation (3), in the matching step.

However, including options in a tabular value function would make the size of the table very large (at
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Algorithm 2 Generalized Policy Iteration for Order Dispatching

Require: Dispatching policy π (and corresponding πd). Storage buffer B with episode trajectory

data {P (x)} collected by π.

for t= 1,2, · · · do

Learn the value function V πd from the data in B using a policy evaluation method, e.g.,

CVNet, TD(0).

Compute w(V πd) by (13) and generate π′ = Π(w).

Match orders and drivers with batch windows using π′.

Collect new trip and driver trajectory data. Fill B with new data.

π← π′

end for

least the square of the number of spatiotemporal cells). It is possible to use the sample approximation

p̂(i) + γ(τ̂
(i)
o +τ̂

(i)
e )V πd(g(ld

(i), td
(i))) instead, but the resulting solution would disregard the drivers’ current

states in this case. As we discussed in Remark 1, this would result in the loss of a desirable property that

promotes fairness and helps improve overall driver experience on the platform.

Deep Reinforcement Learning

An input spatial point l to the CMAC activates a set of grids of multiple resolutions by the quantization

functions {qk(l)}k, which generate a sparse activation vector c(l)∈RA (A is the size of conceptual memory)

that maps l to appropriate rows of the embedding matrix M ∈ RA×m by c(l)TM . The embeddings are

updated as part of the neural network in the learning (training) stage to learn the best feature representation

of each grid. The embedding layer in conjunction with other state features (e.g., supply-demand context)

is connected to a multilayer perceptron (MLP) to output the final state value. CVNet is trained within a

DQN-like framework with minibatch stochastic gradient decent.

Sensitivity of the value function to input perturbation would propagate to the policy derived from the

value function. To improve the robustness of CVNet to input perturbation (to which a tabular value function

is susceptible when training data are sparse for certain parts of the spatiotemporal space, creating ‘spikes’ in

the value table), we regularize an upper bound of the Lipschitz constant of V πd , L(V πd), that is, to bound

the output with respect to the norm of all input states. Since V πd(s) = (vL ◦ vL−1 ◦ · · ·v1)(s), where {vh}Lh=1
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are a series of constituent functions for the L layers of the neural network, L(V πd)≤Πh L(vh), and we have

derived the analytical forms of the Lipschitz constants for the Cerebellar Embedding layer and the MLP

layers in Tang et al. (2019).

Discussion

The system-centric value function V π(X,Odisp) has a global information state and supports a system policy.

Let s := (X,Odisp), and a be the assignment actions for all the drivers and open orders. The Bellman

optimality condition for the system-centric (global) MDP is (assuming unit-time trips)

V π∗(s) = max
a∈A(s)

Es′
[
R(s,a) + γV π∗(s′)

]
. (14)

From Equation (6), the global-view driver-centric values (Holler et al. 2019), which we denote by

V π
j (s(j);X,Odisp) for each driver, sum up to the system value with respect to the same policy, that is,∑
j
V π
j (s(j);X,Odisp) = V π(X,Odisp). In our approach, we are not solving Equation (14). Instead, we have

focused on the driver view of the system dispatching policy and the driver-centric MDP. We define π(j) to

be the j-th driver’s view of π, such that π(j)(s(j),Odisp) = o ∈Odisp. We note that the partial-view driver-

centric value function V π(j)
(s(j),Odisp) is in the same form as the embedded MDP value function, V π̃d(s̃)

in Equation (11). Under the partial view of the system policy, {V π(j)
(s(j))}j sum up to the system-centric

value with respect to the same underlying system policy, given that the set of states {s(j)} have the same

time component. Since V πd(s), which is the compressed version of V π̃d(s̃) (Boutilier et al. 2018), is learned

by crowdsourcing all drivers’ experience trajectories, it can be thought of as the ‘mean’ driver-centric value

function (shared by all drivers) with the corresponding ‘mean’ driver-view policy πd. In general,
∑

j
V πd(s(j))

is only an approximation of the system value function up to an expectation over Odisp. Hence, the policy

evaluation step is approximate in the sense that the target is not the true system value function. The policy is

greedy with respect to a value function defined as the sum of the partial-view driver-centric values evaluated

at each driver’s state.
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