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Abstract—Ride dispatching is a central operation task on a
ride-sharing platform to continuously match drivers to trip-
requesting passengers. In this work, we model the ride dispatch-
ing problem as a Markov Decision Process and propose learning
solutions based on deep Q-networks with action search to opti-
mize the dispatching policy for drivers on ride-sharing platforms.
We train and evaluate dispatching agents for this challenging
decision task using real-world spatio-temporal trip data from
the DiDi ride-sharing platform. A large-scale dispatching system
typically supports many geographical locations with diverse
demand-supply settings. To increase learning adaptability and
efficiency, we propose a new transfer learning method Correlated
Feature Progressive Transfer, along with two existing methods,
enabling knowledge transfer in both spatial and temporal spaces.
Through an extensive set of experiments, we demonstrate the
learning and optimization capabilities of our deep reinforcement
learning algorithms. We further show that dispatching policies
learned by transferring knowledge from a source city to target
cities or across temporal space within the same city significantly
outperform those without transfer learning.

Index Terms—Ride dispatching, Deep reinforcement learning,
Transfer learning, Spatio-temporal mining

I. INTRODUCTION

As GPS-enabled applications are widely used in the ride-
sharing market nowadays, massive amount of trip data could
be collected, offering huge opportunities for providing more
intelligent service and leading to a surge of interest in research
fields such as demand prediction [1], [2], driving route
planning [3], [4], and order dispatching [5], [6]. Our work
focuses on order dispatching. There are two major challenges
in building an intelligent dispatching system for a ride-sharing
platform.

The first challenge is to improve the dispatching efficiency.
Previous work like [7] focused on how to match a ride-sharing
driver with the passenger at the least cost of travel distance or
pick-up time. The work in [8] aims to improve the success rate
of the global order matches, by involving the combinatorial
optimization problem [9]. A higher success rate would deliver
better user experience, but it should not be the only metric to be
optimized. Another previous research [10] proposed a revenue
optimization method for cruising taxi drivers. It leverages
reinforcement learning to help the drivers make decisions on
their cruising routes. After training on the historical trajectory
logs, the cruise efficiency could be improved. The cruise
trajectories (training data in [10]) only consider location states

when the taxi is idle (no customer on board). However, since
passenger trips change drivers’ locations, there is still limitation
on the global optimization if the training data only contains
idle cruise logs.

The other challenge is scalability. For a large-scale platform
that supports many cities, it is common to decompose the order
dispatching problem, often by natural geographical boundaries,
and focus on individual cities instead, given the complexity of
optimizing the entire ride-sharing platform in one shot and the
diverse supply-demand settings across different cities. However,
building a new model for every city on the platform is not
computationally efficient and is hardly scalable because of
the size of each optimization problem and the large number
of cities. Although traffic patterns are usually different in
different cities, they may still share some common properties.
For example, we could imagine the rush-hour traffic demand
between downtown and uptown could possibly be similar across
different cities. Instead of treating each city as a fresh problem,
it is crucial to enable knowledge transfer and sharing across
cities such that learning happens in a global context instead
of being siloed in one narrow area. This is often referred to
as Transfer Learning [11], [12], which has been successfully
applied in many domains, such as multitask learning [13],
[14], deep reinforcement learning [15]–[17], and representation
learning [18], [19].

To tackle the above challenges, we consider the order
dispatching problem from a single driver perspective, where the
driver is assigned a sequence of trip requests with the objective
of maximizing the total revenue throughout the day. Recent
work in [20] has shown great success in this regard by using
a learning and planning approach based on passenger demand
and taxi supply pattern from historical data. In particular, [20]
models this problem as a Markov Decision Process (MDP),
and performs policy evaluation in a discrete tabular state
space using dynamic programming. The limitations of this
approach, however, are mainly in three folds. First, the state
value can vary a lot based on different real-time factors such as
transportation supply and demand, but it is generally difficult for
a tabular model to incorporate and respond to such contextual
information in real time. In other words, the agent has to be
able to generalize beyond the historical data according to online
conditions. Second, trips in different cities constitute different



MDPs that may share many common structures. The tabular
approach treats each MDP separately and does not provide
a viable mechanism for transferring knowledge across cities.
Finally, the policy improvement in [20] is a separate step that
has to be performed on-line for at least one day. To converge
it usually takes dozens of evaluation-improvement iterations
which can take weeks. Ideally, we would like a off-policy
method which learns more efficiently, while avoiding the risk
of learning directly online.

Our contribution in this paper is a deep reinforcement
learning approach to overcome those limitations. We build
upon the recent progress in model-free RL and propose
an order dispatching framework based on Q-learning [21],
[22]. The key to produce an optimal policy that governs
the decision-making at each step is to estimate the state-
action value function of the driver. This function tells us
how good a decision made at a particular location and time
under given supply-demand context with respect to the long-
term objective. Specifically, our approach falls within the deep
Q-network (DQN) framework, with additional capability of
carrying out action search. Our approach effectively combines
historical data and simple synthetic auxiliary data for training
a deep reinforcement learning agent and works even when a
full simulation environment is not available. The resulting
Q-network can be used as a component in a multi-driver
dispatching system. DQN has shown its learning power through
reaching and exceeding human-level playing of the various
Atari games [22]. We show in this paper that it is equally
powerful in learning strategies for drivers and the dispatching
system.

Compared with tabular state value functions, using deep
networks also has the advantages of leveraging trained knowl-
edge and speed up learning across different cites. Consid-
ering that reinforcement learning usually suffers from slow
learning speed at the beginning, transferring correlated prior
knowledge [23] provides an efficient solution to boosting the
learning process. We propose a novel transfer learning method
for order dispatching to leverage knowledge transfer from a
source city, demonstrating that reusing prior models could
improve the training performance in the target cities. The
improvement includes three aspects: higher jump-start (i.e.
better initial solution), faster learning towards convergence,
and higher convergence performance.

In what follows, we will formulate our MDP in Section II
and describe our deep Q-network approach tailored to large-
scale order dispatching problems on a ride-sharing platform in
Section III. In Section IV, we propose a new transfer learning
method, along with two existing methods, which allows us to
transfer knowledge in both spatial and temporal spaces. We
demonstrate the learning and optimization capabilities of our
deep reinforcement learning approach and the advantages of the
proposed transfer learning method in learning speed through
an extensive set of experiments in Section V using real trip
data from the DiDi platform. We close the paper with a few
concluding remarks in Section VI.

II. MDP FORMULATION

Our basic MDP formulation follows that of [20], with the
major distinction that our approach uses more granular state
and action information with supply-demand contextual features
and learns a state-action value function. The agent is defined
from a driver’s perspective. A trip transition consists of order
pick-up and completion: The driver is matched to a trip order
and travels to the trip origin location. The trip moves the driver
to the destination. The driver earns an immediate reward (trip
fee) from this transition. A transition can also be an idle driver
movement. For the rest of the paper, we will consider an idle
driver movement as a zero-reward trip. We list the key elements
of our MDP formulation below.

State, s is the geo-coordinates of the driver and time-of-day
(in seconds) when the driver is dispatched for a trip order,
i.e. s := (l, t), where l is the GPS coordinates pair (latitude,
longitude) and t is time. Note that it could be different from
the actual origin of the trip where the passenger stands at.
Moreover, s may contain additional contextual features at
(l, t), such as statistics of demand, supply, and order fulfillment
within the vicinity of (l, t), denoted as f . In this case, s can be
extended from (l, t) to (l, t, f). We also differentiate the time
for weekday and weekend. For the rest of the paper, we denote
the l and t components of a state s by sl and st respectively.

Action, a is the assignment of a particular trip to the driver,
which is simply defined by the trip destination and drop-off
time. Let the current state s0 := (l0, t0, f0) be the driver’s
location, time and the context when the trip is assigned, and
the next-state s1 := (l1, t1, s1) is the drop-off location, time
and context. Then, the action is a = (l1, t1). The space of all
eligible actions is denoted by A.

Reward, r is the total fee collected for the trip and is a
function of s and a.

An episode is one complete day, from 0:00am to 23:59pm.
Hence, a terminal state is a state with t component correspond-
ing to 23:59pm. We set s1 in all those transitions where the
trip crosses midnight to be terminal state.

State-action value function, Q(s, a) is expected cumulative
reward that the driver will gain till the end of an episode if
he/she starts at state s and takes an action a. Mathematically,
Q(s, a) := E

[∑T
t=0 γ

tR(St, At)|S0 = s,A0 = a
]
, where

S,A, and R are stochastic variable version of s, a, and r
respectively; T is the number of transition steps till the terminal
state, and γ is the discount factor for the future rewards. We
discretize the time space into steps of 10 minutes and γ is
multiple powers of the time steps that an order strides across.

Policy, π(a|s) is a function that maps a state s to a distri-
bution over the action space (stochastic policy) or a particular
action (deterministic policy). The greedy policy with respect
to a learned Q(s, a) is given by π(s) := argmaxaQ(s, a).

State value function, V (s): expected cumulative reward
that the driver will gain till the end of an episode if he/she
starts at state s and follows a policy π. Assuming that a
greedy policy w.r.t. the Q function is used, the state value
V (s) := Q(s, π(s)) = maxa∈AQ(s, a).



Fig. 1: Left: Q-network in [22]. Right: Q-network in this paper.

III. DEEP Q-NETWORK WITH ACTION SEARCH

To solve the MDP formulated in Section II, we adopt the
model-free approach and use the DQN framework proposed
in [22]. The deviations from [22] lie in two folds: First, on
the neural network architecture, due to the continuous action
space, we use both state and action, (s, a) as the network input
and the Q-value as the single output, whereas vanilla DQN
assumes a small discrete action space and uses only the state
as input and multiple outputs corresponding to the action value
for each action. The hidden layers in both cases can be either
fully-connected layers or convolution layers, depending on the
specific application. Figure 1 illustrates the structure contrast.
Second, since the action space within our MDP formulation
for order dispatching is technically continuous, we develop
an action search mechanism (see Sections III-B and III-C) to
define a discrete action space for each transition. The pseudo
code of the algorithm is shown in Algorithm III.2.

In the DQN framework, the mini-batch update through back-
propagation is essentially a step for solving a bootstrapped
regression problem with the following loss function(

Q(s0, a|θ)− r(s0, a)− γmax
a′∈A

Q(s1, a
′|θ′)

)2
, (1)

where θ′ is the weights for the Q-network of the previous
iteration and A is the action space.

To improve training stability, we use Double-DQN proposed
in [24]. Specifically, a target Q-network Q̂ is maintained and
synchronized periodically with the original Q-network. The
targets in (1) is modified so that the argmax is evaluated by
the target network:

r(s0, a) + γQ̂(s1, argmax
a′∈A

Q(s1, a
′|θ′)|θ̂′). (2)

A. Model training

Building a realistic order dispatching environment that
simulates city-scale driver-passenger dynamics is very chal-
lenging, leaving alone applying a value function learned from
a simulator to real settings. On the other hand, a large amount
of historical trip data is usually available in the data warehouse.
Therefore, we choose to use historical trip data for training.
This distinguishes our method from conventional reinforcement
learning approaches, in that there is no explicit simulation
environment involved in training. We instead train our agent
on historical data generated by some existing behavior policy
and augmented with simple synthetic data, which we will

describe in Sections III-B and III-C. Each trip x defines a
transition of the agent’s states (s0, a, r, s1). These transition
experiences are retrieved from the data warehouse one by one
(as if they were generated from a simulator) and are stored in
a replay memory, similar to [22]. Each iteration then samples a
mini-batch from this replay memory. We state our DQN-based
training algorithm in Algorithm III.2 and explain the various
algorithmic elements in the subsequent sections.

B. Action search

Recall from Section II that an action takes the form (l, t).
Since both the GPS coordinates and time are continuous,
computing the max-Q term in (1) exactly is not tractable. In
addition, the t-component has dependency on the l-component
as it reflects the duration of the trip. Random sampling from
the action space is thus not appropriate. Hence, we develop an
approximation scheme for computing this term by constructing
an approximate feasible space for the actions, Ã(s). This
notation makes explicit the dependency of the action space
on the state s where the search starts. Instead of searching
through all valid actions, we search within the historical trips
originating from the vicinity of s:

Ã(s) := {xs1 |x ∈ X , B(xs0) = B(s)}, (3)

where X is the set of all trips, and B(s) is discretized spatio-
temporal bin that s falls into. For spatial discretization, we use
the hexagon bin system, where in our case here, a hexagon
bin is represented by its center point coordinates. xs0 and xs1
are the s0 and s1 components of the trip x respectively. The
larger the search space is, the more computation is required
for evaluating the value network at each action point. We set
the number of actions allowed in the action search space as a
tuning parameter and do random sampling without replacement
if necessary. The same search procedure is used for policy
evaluation, where we simulate the driver’s trajectory during
the day using historical trip data.

C. Expanded action search

Due to training data sparsity in certain spatio-temporal
regions, e.g. some remote area in early morning, the above
action search may return an empty set. In this case, we perform
an expanded action search in both spatial and temporal spaces.
The first search direction is to stay at the last drop-off location
and wait for a period of time, which corresponds to keeping
the l-component, sl constant and advancing st, till one of the
following happens (s′ is the searched state.): 1) If Ã(s′) is
non-empty, then return Ã(s′). 2) If a terminal state is reached,
then return the terminal state. 3) If s′t exceeds the wait-time
limit, then return s′. The second search direction is through
spatial expansion by searching the neighboring hexagon bins of
s in a layered manner. See Figure 2 for an illustration. For each
layer L of hexagon bins, we search within the appropriate time
interval to take into account the travel time required to reach
the target hexagon bin from s. The travel time estimation can
be obtained from a map service, for example, and is beyond
the scope of this paper. We denote the layer L neighboring



spatio-temporal bins of s by B(s, L) and the set of historical
trips originating from any of the bins in B(s, L) by

Ã(s, L) := {xs1 |x ∈ X , B(xs0) ∈ B(s, L)}. (4)

We stop increasing L when Ã(s, L) is non-empty and return
Ã(s, L). Otherwise, we return B(s, Lmax), i.e. the hexagon
bins’ center points and their associated time components. Lmax

basically controls the size of the action space. Algorithm III.1
summarizes the full action search. We can view action search
as bridging a spatio-temporal bin to another bin by keeping
the driver waiting or moving the driver without a passenger to
another location to get dispatched for an order.

Algorithm III.1 Spatio-temporal action search

1: Given s = (l0, t0); t′ is search time limit.
2: A ← {}
3: Tmax ← min(T, t0 + t′)
4: if Ã(s) 6= ∅ then
5: A ← A+ Ã(s)
6: else
7: for t = t0, t0 + 1, · · · , Tmax do
8: s′ ← (l0, t)
9: if Ã(s′) 6= ∅ then

10: A ← A+ Ã(s′)
11: break
12: end if
13: end for
14: if A did not change from line 6 then
15: A ← A+ s′

16: end if
17: for L = 1, · · · , Lmax do
18: if B(s, L) 6= ∅ then
19: A ← A+ Ã(s, L)
20: break
21: end if
22: end for
23: if A did not change from line 17 then
24: A ← A+B(s, Lmax)
25: end if
26: end if
27: return A

D. Terminal state values

From the definition of a terminal state in Section II, it is clear
that Q(s, a) with st near the end of the episode horizon should
be close to zero regardless the location sl. Following the idea
of the dynamic programming algorithm, we add transitions
with s1 being a terminal state to the replay buffer at the very
beginning of training. We find that it helps getting the terminal
state-action values right early in training. This is important
because the target values for the states s0’s in the mini-batch
updates of DQN (i.e. (2)) are computed through bootstrapping
on the values of states that are temporally after them. Since
the training samples with a terminal state form a very small

Fig. 2: Action search. The red circle lines cover the first two
layers of neighboring hexagon bins of l0. The arrows represent
searches to hexagon bin centered at l1 (first layer) at time
t1 > t0 and hexagon bin centered at l2 at time t2 > t1.
The spatio-temporal bins covered by the inner red circle are
B((l0, t0), 1).

.

percentage of the entire data set, a uniform sampling of mini-
batches would result in the terminal state values being learned
without enough supervision, which causes the values of many
states far away from the terminals to be fitted with incorrect
targets, hence slowing down the learning process.

E. Experience augmentation

The original training data is the experience generated by
the given historical policy, which may not have sufficiently
explored the trajectory space. In particular, when the driver is
at a state where historically there were few trips originating
from there, our action search may require the driver to wait a
long period of time or cruise without a passenger before a trip
starts. However, there might be very few such transitions in
the data. If the agent were trained on the original trip data, it
would not learn to make good decisions in situations where the
driver go into a rare state. The way we mitigate this problem is
to supplement the original training experience with transitions
obtained through action search. Specifically, we add action
search experiences generated by following Sections III-B and
III-C during mini-batch update (2) to the replay memory to
supplement the existing training data.

F. Evaluating Qπ

To learn the average value of a driver in a given state, one
approach is to learn Qπ of the policy π that generated the
training data. To do that, we simply replace the ‘argmax’ in
(2) with ‘mean’. The resulting algorithm is similar to Expected
SARSA [25]. The value network is trained on targets that
represent the average values that drivers would have over all
possible actions under policy π. Dispatching policy that is
greedy or collectively greedy (see Section III-G) with respect
to Qπ is one-step policy improvement.

G. Deployment in multi-driver dispatching environment

The real environment is intrinsically multi-agent, since
multiple drivers fulfill passenger orders at the same time.
Our learned single-driver value function can nevertheless be



Algorithm III.2 Double-DQN with spatio-temporal action
search

1: Given: historical trips pool P , a constant C.
2: Initialize replay memory M to capacity N and insert the

terminal transitions set {x : xs1 is terminal}.
3: Initialize the state-action value network Q with random

weights θ0.
4: Initialize the target state-action value network Q̂ with

weights θ̂0.
5: for t = 1, 2, · · · , T do
6: Remove a trip sample (s0, r, s1) from P , where s0 =

(l0, t0), and s1 = (l1, t1).
7: Extract action a from s1. Store transition (s0, a, r, s1)

in M.
8: Sample a random mini-batch {(sj , aj , rj , sj+1)} from

M.
9: For each sj+1, perform action search in Algorithm III.1

and get Ã.
10: if sj+1 is a terminal state then
11: yj ← rj
12: else
13: yj ← rj + γQ̂(sj+1, argmax

a′∈Ã
Q(sj+1, a

′|θt−1)|θ̂t−1)

14: end if
15: Perform a gradient descent step on θ per loss function(

yj −Q(sj , aj |θ)
)2

and get θt.
16: if t mod C = 0 then
17: θ̂t ← θt
18: end if
19: Perform experience augmentation described in Section

III-E.
20: end for
21: return Q

deployed in a multi-agent environment in a similar way as in
[20]. At each decision point (dispatching), we assign the orders
collected within a dispatching window to a set of drivers to
maximize the total value of the assignments.

argmax
a∈A′

∑
s∈S

Q(s, a(s)), (5)

where a(s) is an assignment function that assigns an order
from the pool to a driver s; A′ is the space of all assignment
functions for the order pool; and S is the set of available free
drivers (and their states). The matching part can be solved by
a standard matching algorithm, such as the Hungarian Method
(a.k.a. KM algorithm). Specifically, we use the single-driver
value function to compute the edge weights of the bi-partite
graph for the KM algorithm. We call such a dispatching policy
collectively greedy w.r.t. Q.

H. State values (V -values) in tabular form

In [20], a tabular-form state value function V (·) is learned to
compute the edge weights corresponding to the trip assignment
x = (s, a, r, s′), where s and s′ are without contextual features.

As r+V (B(s′)) is a sample approximation of Q(s, a), Ax :=
r+ V (B(s′))− V (B(s)) is the advantage associated with the
trip assignment x and is used as the edge weights. We recall
that B(s) is the spatio-temporal bin associated with s.

Our method is able to directly leverage the above framework.
We can generate the tabular V-function from the learned Q-
function as follows: For every spatio-temporal cell B(s) with
cell center s, V ∗(B(s)) := maxa∈ÃQ

∗(s, a), for Q∗ learned
by Algorithm III.2, and V π(B(s)) := meana∈ÃQ

π(s, a), for
Qπ obtained by following III-F.

IV. MULTI-CITY TRANSFER

The dispatching system has to take charge of the orders
across a large number of cities. Training a single dispatching
agent that covers all cities is computationally prohibitive and
has limited flexibility in deployment. Furthermore, if we treat
the entire dispatching as a set of independent optimization
problems for different cities, then the computation cost is also
quite demanding. For example, with a 6-core CPU, single GPU
computing resource setting, optimizing a dispatching policy
model for a mid-sized city in China using one month of data
will require around 30 hours to converge. Under such scenarios,
transferring prior knowledge (i.e. reusing previously trained
models) may be a feasible solution. More importantly, because
of the non-convex property, deep learning would suffer from
local optima, and if the training starts from a better initial
point or follows a better gradient direction, which shall come
from the knowledge transfer, it would probably reach a higher
convergence performance.

Traffic patterns would not be exactly the same across
different cities because of the urban structures, development
levels and many other factors. However, they could possibly
share some common characteristics, such as the rush hours
of morning and evening traffic and trip demands from resi-
dential areas to commercial districts. Taking advantages of
the approximation function (i.e. non-linear network) of the
DQN, we know how to construct the policy model. In other
words, the formulation of DQN gives us many flexible ways of
transferring learned policies. This is also an advantage over [20]
For a tabular form value function, no function approximator is
involved, so the learned policy of each city is so unique that
it is not applicable for knowledge transfer.

We consider three methods to improve the training on the
target cities, including fine-tuning, progressive network, and
correlated-feature progressive transfer (CFPT). The common
idea of these transfer methods is to employ trained network
weights learnt from the source city. Network structures are
shown in Figures 3 and 4.

Fine-tuning [26] remains a popular method for transfer
learning. After training the network on the source city, we
transfer the weights to the target city’s network. As shown
in Figure 3, we initialize the weights of all fully-connected
layers with the weights learnt from the source city, and leave
them trainable on the target city data. Then, the network is
fine-tuned via backpropagation.



Progressive network [15] leverages the trained weights
via lateral connections to the target network. The connection
function is defined as:

h
(t)
i = f

(
W

(t)
i h

(t)
i−1 + U

(c)
i h

(s)
i−1

)
, (6)

where W (t)
i denotes the weight matrix of layer i of the target

network, and U (c)
i denotes the lateral connection weight matrix

from the network of the source tasks. h(t)i and h
(s)
i are the

outputs of layer i in the target network and the source network,
respectively. f(·) is the activation function. To perform the
weights transfer, we first train a source network as in Figure 1,
and then connect it to the target network as in Figure 3. We
also prone the output layer (the semi-transparent circle) of the
source network during transfer.

CFPT: Due to the variety of state space, not all state
elements are adaptive across different cities. Instead of using
a fully-connected network which takes all state elements as an
entirety during training, we build and train a parallel progressive
structure as shown in Figure 4 for the source city, and the
connection is the same as that in 6. In addition, the network
input is also separated into two parts: s denotes those elements
intuitively not adaptable for the target city, and f denotes those
adaptable. During training for the source city, all the weights
of the network are trainable. For the target city, we build the
network with the same structure and particularly reuse the
weights of the progressive part (shown as the green blocks
in Figure 4) from the source city’s model that takes f as the
direct input. The major novelty of CFPT is: during the training
stage of the source city, we already split the network into to
parallel flows, where the bottom flow (for future transfer) in
Figure 4 only takes care of the input f . The number of neurons
within each same-level layers of the two flows is half of the
original fully-connected network, and this will substantially
reduce the number of total trainable parameters.

In this work, we define the correlated feature input f as
the concatenation of spatio-temporal displacement vector and
real-time contextual features. Using the notations in Section II,
the 3-tuple spatio-temporal displacement vector is computed
as (s1 − s0). The 5-tuple contextual feature vector contains
real-time event counts, such as real-time number of idle drivers,
and real-time number of orders created in the past 1 minute.
Compared with the absolute GPS locations, the above correlated
features are related to the statistics of dispatching demand,
supply, and order fulfillment. Generally speaking, they could
be more adaptive as inputs across different cities, and that is
why we split the original network input into two sub-spaces.
Figure 3 illustrates the input space difference among the above
three methods. Notice that s = (s0, s1) already includes the
action input A (trip destination), which is defined in Section II.

V. EXPERIMENTS

In this section, we will discuss the experiment settings and
results. We use historical ExpressCar trip data obtained from
the DiDi dispatching platform as our training data. The dataset
is divided into training set (2/3) and testing set (1/3). Each

Fig. 3: Structures of finetuning and progressive network. We
initialize the green blocks with trained weights from the source
city. Frozen layers would keep the transferred weights during
the target training.

Fig. 4: CFPT network: we separate the input space and only
transfer network weights shown as green blocks.

mini-batch can be viewed as a small set of sample points on
the Q (state-action) value function. We used a discount factor
γ = 0.9. For all DQN-based methods, we used a replay buffer
with a size of 100000. We normalized all state vectors with
their population mean and standard deviation. We found that
this pre-processing is necessary for a stable training. For the
training results, we use a sliding window of 1000 episodes
to calculate the reward curve and the total training duration
is 40000 episodes. For the testing results, we set five testing
points during training: 0% , 25%, 50%, 75%, and 100%. At
each checkpoint of training, we take a snapshot of the current
network and evaluate it on the testing dataset for 5 trials of
100 episodes with random initial states.

A. Single-agent evaluation environment

Since the transitions data is entirely historical and they do
not necessarily form complete episodes, we build a single-
driver dispatching environment from the past trip data (testing
set) for a direct and explicit evaluation of the policy generated
from the learned value function. Basically, we assume that after
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Fig. 5: Comparison between the two types of the inputs: original
spatio-temporal state and state with expanded contextual
features.

a driver drops off a passenger at the destination, he/she would
be assigned a new trip request starting from the vicinity of
the previous destination. The search space can be augmented
as necessary following Section III-C to cover the cases where
there are no historical trips around the last drop-off area. The
next move is selected by the given policy from the action search
output, which could be a combination of fee-generating trips or
wait/reposition actions. The reward associated with the action
is the actual trip fee if the action involves a historical trip;
otherwise the reward is zero (for waiting or repositioning). We
use the scaled reward percentage (with the same normalization
constant for a given city) as the performance metric. We run
the simulation for multiple episodes (days), and the cumulative
reward gained is computed and averaged over the episodes.
For plotting the training curves, we step the agent through this
environment using a greedy policy with respect to the learned
Q-value function at the same pace as the training steps. In
addition to the original spatial-temporal input space, we find
that the contextual features can benefit the training, which is
shown in Figure 5. Hence in the following sections, we use
the expanded state space as network input.

B. Baselines DQN training

We build the Q-network with three hidden dense layers
and ReLU activations and trained dispatching policies for four
cities in China, denoted by A, B, C, and D, respectively. They
span different sizes of population and geographical regions.
We summarize the characteristics of the four cities in Table I.

To show the optimization improvement of Algorithm III.2
as our baseline method, we first benchmark it with the policy
evaluation mentioned in Section III-F. Figure 6 compares the
training curves of DQN and policy evaluation, where the former
is maximizing the accumulative rewards, and the latter is

TABLE I: Basic characteristics of the four Chinese cities in
the experiments.

City Size Region

A Large Northern
B Small Southern
C Medium Southern
D Large Western
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Fig. 6: Training curves of DQN with action search on the four
cities.

just learning to evaluate the current policy that generates the
historical data as described in Section V-A. The testing curves
with standard deviation error bars are shown in Figure 7.

As we can see from the performance curves, our Algo-
rithm III.2 is capable of learning to optimize the episode order
revenue. Figure 8 shows the average Q values of training mini-
batches, where we have observed convergence of the value
functions in all cases. We compute the tabular-form state value
function as described in Section III-H and plot the state values
of 120 randomly sampled location cells by time id in Figure 9:
each point indicates the potential future rewards discounted
with γ = 0.9, so the state value is computed within a decaying
future horizon. We see that the state value function correctly
captures the decreasing monotonicity in the temporal space
of the discounted cumulative rewards. However, the learning
results, or improvements are not the same among different
cities. In our experiments, we find that for those smaller cities
with less trip data (due to fewer users in such areas), e.g. B in
Figure 6b, the optimization improvement is not as significant as
larger cities, such as City D. This is because in such cities with
lighter order demand, the trip patterns are much simpler, and
our current order dispatching system [8] could nearly achieve
the optimal match between the drivers and the customers. It
also indicates that there is not much potential gain for the
policy improvement. However, in those cities with heavier
dispatching load and lager trip data amount, the optimization
improvement is much more obvious, such City D in Figure 6d.
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Fig. 7: Testing evaluation of DQN with action search on the
four cities, at 5 different checkpoints on the training phase.
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Fig. 8: Average Q values of the training mini-batches.

Fig. 9: V-values of 120 sampled location bins in City D.

C. Transfer improvements

To achieve robust and effective network training on the
target cities, we performed two types of transfer experiments,
including spatial transfer and temporal transfer. For spatial
transfer, among the four experiment cities mentioned in the
previous section, City A is used as the source city, while the
other three are used as the target cities. For temporal transfer,
the city models trained on one month of data are used as
the source, while the models of the same cities trained on a
later month of data are used as the target. We use the trained
network weights from the previous section V-B as the prior
knowledge. Under each type of transfer experiments, we will
compare and discuss the learning performance of the three
transfer methods, including finetuning, progressive network,
and correlated-feature progressive transfer (CFPT).

Training curves and testing checkpoints are shown in
Figure 10. To highlight the results, we show the average of the
accumulated episode reward sampled from the historical trip
data in the real dispatching system. Comparing to the vanilla
DQN training, we could see the following improvements: 1)
Target cities will benefit from jumpstart, which is the increased
initial performance at the start; 2) Learning is more efficient,
which means the convergence would happen earlier during
training; 3) The convergence performance is better. However,
the effectiveness of the three methods are different. In particular,
CFPT outperforms the other two transfer methods, indicating
that the online features f can be more helpful for the learning
adaption across different cities if used separately from the
absolute spatio-temporal states (l, t). The weakness of the
original progressive network is that it does not consider the
correlation difference among all state/feature elements. Because
of the catastrophic forgetting property of finetuning, the prior
knowledge will easily be forgotten along with the update of
weights, and we also see less significant improvement on the
convergence performance. Temporal transfer results are shown
in Figure 11. Although the transfer is performed within the
same city, CFPT would significantly outperform the baseline
finetuing method, which directly copies the network from a
previous month and continue training.

To get insight into how the knowledge transfer could improve
the training in the target cities, we compare the average Q
values in each batch during training. Taking City D as an
example, we could find the distinct difference between the
Q-value curves in Figure 12. For the original DQN training,
there is still noticeable variance even though the mean Q value
almost converges. In contrast, for CFPT, the batch’s variance
is much smaller. Such difference may indicate that through
the lateral connection from the previous trained network, the
direction of “gradient decent” in the target training is more
explicit. In other words, transferring the prior knowledge may
efficiently guide the learning direction.

VI. CONCLUSION

This paper has proposed an adapted DQN-based optimization
method for order revenue on the DiDi ride-dispatching platform.
Different from the vanilla DQN with enumerable output actions,



0 5000 10000 15000 20000 25000 30000 35000 40000
Training Episode

0%

20%

40%

60%

80%

100%
Sc

al
ed

 R
ew

ar
d

CFPT
Progressive
Finetuning
DQN_baseline

(a) City B

0 5000 10000 15000 20000 25000 30000 35000 40000
Training Episode

0%

20%

40%

60%

80%

100%

Sc
al

ed
 R

ew
ar

d

CFPT
Progressive
Finetuning
DQN_baseline

(b) City C

0 5000 10000 15000 20000 25000 30000 35000 40000
Training Episode

0%

20%

40%

60%

80%

100%

Sc
al

ed
 R

ew
ar

d

CFPT
Progressive
Finetuning
DQN_baseline

(c) City D

0 5000 10000 15000 20000 25000 30000 35000 40000
Training Episode

0%

20%

40%

60%

80%

100%

Sc
al

ed
 R

ew
ar

d

History average
CFPT
Progressive
Finetuning
DQN_baseline

(d) City B

0 5000 10000 15000 20000 25000 30000 35000 40000
Training Episode

0%

20%

40%

60%

80%

100%

Sc
al

ed
 R

ew
ar

d

History average
CFPT
Progressive
Finetuning
DQN_baseline

(e) City C

0 5000 10000 15000 20000 25000 30000 35000 40000
Training Episode

0%

20%

40%

60%

80%

100%

Sc
al

ed
 R

ew
ar

d

History average
CFPT
Progressive
Finetuning
DQN_baseline

(f) City D
Fig. 10: Training and testing curves of the spatial transfer. (Top: training curves; bottom: testing rewards at different checkpoints
during the training.)
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Fig. 11: Training and testing curves of the temporal transfer. (Top: training curves; bottom: testing rewards at different
checkpoints during the training.)



0 5000 10000 15000 20000 25000 30000 35000 40000
Training Episode

0%

20%

40%

60%

80%

100%

M
ea

n 
Q-

va
lu

e
Mean Q-value of mini-batches

(a) DQN training

0 5000 10000 15000 20000 25000 30000 35000 40000
Training Episode

20%

30%

40%

50%

60%

70%

M
ea

n 
Q-

va
lu

e

Mean Q-value of mini-batches

(b) CFPT training

Fig. 12: Comparison of the average mini-batch Q values for
City D.

we encode the continuous action space (trip destination) as part
of the input state space and provide a corresponding action
search method. We show that our application is capable of
optimizing the spatio-temporal problem from a single driver’s
point of view. By showing the diverse learning results due to
the variety of cities’ traffic patterns, we know that the learning
process is not trivial across different cities. As the solution
to combating such diversity, we have evaluated two existing
transfer learning methods: finetuning and progressive network,
and propose one online-feature based adaption method – CFPT.
Results show that reusing trained models can speed up the
learning and improve the robustness when dealing with new
patterns. In particular, by focusing on the correlated features
across different domain, CFPT can achieve the most effective
transfer and outperform the other methods.

Our proposed optimization approach is from a single driver’s
standpoint with a local view. To overcome the stationary
environment assumption, we can learn the dispatching policy
using a multi-agent reinforcement learning method. We can
also train a global value function to learn a centralized policy.
We leave these ideas as future directions of research.
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