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Abstract—The aim of this paper is to develop a multi-
objective distributional reinforcement learning framework for
improving order dispatching on large-scale ride-hailing plat-
forms. Compared with traditional RL-based approaches that
focus on drivers’ income, the proposed framework also accounts
for the spatiotemporal difference between the supply and demand
networks. Specifically, we model the dispatching problem as
a two-objective Semi-Markov Decision Process (SMDP) and
estimate the relative importance of the two objectives under some
unknown existing policy via Inverse Reinforcement Learning
(IRL). Then, we combine Implicit Quantile Networks (IQN) with
the traditional Deep Q-Networks (DQN) to jointly learn the
two return distributions and adjusting their weights to refine
the old policy through on-line planning and achieve a higher
supply-demand coherence of the platform. We conduct large-
scale dispatching experiments to demonstrate the remarkable
improvement of proposed approach on the platform’s efficiency.

Index Terms—Order Dispatching, Multi-Objective Reinforce-
ment Learning, Distributional Reinforcement Learning, Inverse
Reinforcement Learning, Semi-Markov Decision Process

I. INTRODUCTION

In the past few years, the rapid development of mobile
internet service brings the advent of large scale online ride
hailing services such as Uber and DiDi, which substantially
transforms the transportation landscape of human beings. With
advanced data storage and processing technologies, platforms
can continuously collect and analyze real-time traveling infor-
mation, dynamically updating the platform policies [7], [11],
[22]. In this work, we consider the problem of driver-passenger
dispatching [2], [9], [15], [23], [27], which can be treated as
a sequential decision making problem by assigning available
drivers to nearby passengers over a large-scale spatio-temporal
region. Each single driver makes serving decisions, guided by
some underlying order dispatching policy as opposed to each
driver learning his/her own policy [16], [19].

Traditional dispatching policy follows the ‘first-come first-
served’ rule [8], [24], which is non-optimal from both spatial
and temporal perspectives. Zhang et al. [23] makes an im-
provement by solving a combinatorial optimization problem
, but still ignores the long-term effects. Three recent studies
[16], [18], [20] introduce the idea of reinforcement learning to
ensure the spatio-temporal optimality. They solve the real-time
matching by using the spatio-temporal value function obtained
from off-line deep Q-learning.

Unfortunately, none of these methods are optimal from the
perspective of passengers since they all aim to maximizing the
total driver income (TDI) other than the supply-demand equi-
librium which is crucial for passenger-side metrics, such as or-
der response rate (ORR) and order completion rate (OCR). In
practice, the supply-demand equilibrium is achieved when the
spatio-temporal distributions of supplies and demands are well
aligned to each other. In this case, customer requests can be
more quickly answered by nearby idle drivers such that ORR
can be increased. OCR is also increased as the long-distance
dispatching becomes less frequent which reduces the average
waiting time of customers and pick-up cost of drivers. Fur-
thermore, without taking the spatio-temporal supply-demand
differences into consideration, the expected TDI may be over-
estimated by the existing RL based methods since they model
each single driver as an independent agent and ignore the
interaction effects when multiple drivers are transferring to
the same state. When the future demand has already been
fulfilled by drivers re-allocated by previous completed trips,
assigning more drivers there might decrease the original value
of the target location. Therefore, the healthiness of a ride-
hailing platform, which is a two-sided marketplace, hinges
on good experiences for both drivers and passengers. Simply
maximizing TDI may exacerbate the misalignment of supply
and demand distributions, leading to longer average waiting
time for passengers and less desirable ridership experience.

In this paper, we propose a multi-objective reinforcement
learning (MODRL) framework to jointly maximize drivers’
revenues and the overall supply-demand coherence. We model
the service trajectory of each single driver as a multi-objective
semi-Markov decision process and the scalarized reward func-
tion can be seen as the weighted sum of order fee and supply-
demand difference at the destination of either a charged trip
or an idle movement. We use Inverse Reinforcement Learning
(IRL) to learn this reward function based on the observed
moving trajectories of platform drivers. To capture the intrinsic
randomness of the dispatching process, which arises from the
environment stochasticity, we combine a recent distributional
reinforcement learning (DRL) algorithm, Implicit Quantile
Networks (IQN) [3], with the traditional value-based Deep
Q-Networks (DQN) to jointly learn the quantile functions
for the two separate objectives and the expectation of their
weighted sum under the background policy. With the obtained



spatio-temporal value functions, we search for the optimal
combination of the two objectives in evaluating each driver-
passenger pair and optimally assign collected orders to nearby
idle drivers within each small dispatching window to maximize
the total utility scores [19]. We compare our method with other
state-of-art strategies using a realistic dispatching simulator.
According to the experiment results, our method can not only
improve the TDI on the supply side but also increase the ORR
and OCR on the demand side.

II. A MULTI-OBJECTIVE SEMI-MDP FORMULATION

We model the dispatching system as a multi-objective semi-
Markov decision process (MOSMDP) with a set of temporally
extended actions, known as options. Under the framework
of MOSMDP, each driver (agent) interacts episodically with
the ride-hailing platform (environment) at some discrete time
scale, t ∈ T := {0, 1, 2, ..., T} until termination T is reached.
Within each action window t, the driver perceives the state of
the environment, described by the feature vector st ∈ S , and
on that basis chooses an option (temporally extended action)
ot ∼ π(·|st) ∈ O following an underlying dispatching policy
π : S × O → [0, 1] that terminates in st+∆t

∈ P (·|st, ot). As
mentioned in the introduction part, each single driver follows
the dispatching policy π till the end of a day although he or
she is allowed to move around before the next trip assignment
is activated. As a response, the environment produces a set of
numerical rewards (R1(st, ot), R2(st, ot)) for each intermedi-
ate step t. We highlight the following specifics:

State, Option, same as [16], thus the details are omitted.
Reward, a vector of two different rewards R(st, ot) =

(R1(st, ot), R2(st, ot))
> received by executing option ot at

state st, where R1(st, ot) denotes the order fee and R2(st, ot)
denotes the spatio-temporal relationship at destination st+∆t

.
To be specific, the demand-supply difference (number of
demands - number of idle supplies) in a target spatio-temporal
grid st+∆t

is used to represent R2(st, ot), which is one
the most important metrics to quantify the supply-demand
coherence of ride-sharing platforms and should always be
considered together with TDI. ot = 1 results in both nonzero
R1 and R2, while ot = 0 leads to a transition with zero
R1 but non-zero R2. For order dispatching, both R1(st, ot)
and R2(st, ot) are spread uniformly across the trip duration
induced by the discount factor γ, we can thus introduce the
discounted accumulative reward R̂i for each i as

R̂i(st, ot) =
Ri(st, ot)

∆t
+ γ

Ri(st, ot)

∆t
+ · · ·+ γ∆t−1Ri(st, ot)

∆t

=
Ri(st, ot)(γ

∆t − 1)

∆t(γ − 1)
, where 0 < γ < 1, ∆t ≥ 1

Policy, π(o|s) specifies the probability of taking option o
in state s regardless of the time step t. Executing π in the
environment generates a history of driver trajectories denoted
as {τk} ∈ H := {(skt0 , okt0 , . . . , sktTτk } where each tj is
the time index of the j-th activated state along the trajectory
τk. We use Zπ(s) = (Zπ1 (s), Zπ2 (s))> to denote the random
variable of the cumulative rewards the driver gains from s
by following policy π. The expectation of Zπ(s) is V π(s) =

Eπ,p,R(Zπ(s)), and we have the multi-objective distributional
Bellman equation for for Zπ

Zπ(st) :
D
= R̂(st, ot) + γ∆tZπ(st+∆t

) (1)

st+∆t
∼ P (·|st, ot), ot ∼ π(·|st)

where :
D
= here denotes distributionally equivalence.

III. MULTI-OBJECTIVE DISTRIBUTIONAL
REINFORCEMENT LEARNING

In this section, we describe the Multi-Objective Distribu-
tional Reinforcement Learning (MODRL) framework to learn
the return distribution Zπ(s) = (Zπ1 (s), Zπ2 (s))> and its
expectation V π(s) under some unknown existing policy π the
platform currently uses in the real world. We assume that the
MOSMDP specified in this paper employs scalarization func-
tions [17] to define a scalar utility over a vector-valued policy
which reduces the dimensionality of the underlying multi-
objective environment. The importance of the two objectives
in the scalarized reward function w̃1 and w̃2 under the existing
policy π can be obtained through an IRL-based approach
using the observed historical trajectories, which is described
in Section III-A. With the learned weights W̃ = (w̃1, w̃2),
we then propose a joint RL based estimation approach in
Section III-B to learn value functions V π1 (s) and V π2 (s), which
incorporates the distributional reinforcement learning based
method IQN with traditional DQN to not only capture the
uncertainty within the total returns but also fully utilize the
joint information of the two objectives obtained from IRL.

A. Multi-Objective Inverse Reinforcement Learning

Most existing reinforcement learning methods for multi-
objective tasks rely on single-policy algorithms [5], [10]
which transform the reward vector into a scalar. For any
given policy π, we let the scalarization fπ be a function
that projects R̂ to a scalar by a weighted linear combination
fπ(R̂;W ) =

∑2
i=1 wiR̂i where W = (w1, w2)> is a weight

vector parameterizing fπ .
IRL has been widely used to learn reward function of an

MDP in the past decade. The key idea of IRL methods is to
find a reward function such that the estimations of action-state
sequences under an underlying policy matches the observed
historical trajectories [13], [25], [26]. The cumulative reward
for each objective i ∈ {1, 2} along a trajectory τ is defined as
R̂i(τ) =

∑Tτ
j=0 γ

tj R̂(stj , otj ) Let R̂(τ) = (R̂1(τ), R̂2(τ))>,
the expected return J(π) under policy π can be written as a
linear function of the two reward expectations

J(π) =
∑
τ∈H

P (τ |π, T )fπ(R̂(τ);W ) (2)

where H denotes the set of all possible driver trajectories and
fπ(R̂(τ);W ) =

∑2
i=1 wiR̂i(τ). P (τ |π, T ) is the probability

of trajectory τ being generated by the MOSMDP such that

P (τ |π, T ) =
∑

(s,o)∈τ

π(o|s)T (s′|s, o) (3)



where π(o|s) is the probability of taking action o at state s
according to the background policy. T (s′|s, o) is the prob-
ability of transferring s to s′ after taking action o. Let
P (τ |π, T ) = P (τ) for simplification when π and T are given,
the equation

∑
τ∈H̃ P (τ)R̂(τ) = R̃ holds where R̃ is the

empirical expectation of R̂(τ) based on some observed drivers’
trajectories H̃ . Most existing methods [25], [26] can obtain the
maximum likelihood estimate of W by using gradient decent
where the gradient is given by g = R̃−

∑
τ∈H̃ P (τ)R̂(τ).

In our case, it is difficult to estimate the gradient g above
since the transition function T in P (τ) cannot be easily
computed considering the system complexity and the limited
observed trajectories. To address this issue, we employ Rela-
tive Entropy Inverse Reinforcement Learning (REIRL) to learn
the weight vector W . REIRL is a model free method, which
incorporates Relative Entropy Policy Search (REPS) [14] with
Generalized Maximum Entropy methods [4]. By using REIRL,
we can get rid of T and estimate F (W ) =

∑
τ∈ĥ P (τ)R̂(τ)

as follows:

F (W ) =
∑
τ∈ĥ

U(τ)Π(τ)−1efπ(R̂(τ);W )∑
τ ′∈ĥ U(τ ′)Π(τ ′)−1efπ(R̂(τ ′);W )

R̂(τ) (4)

where ĥ is a small batch sampled from the whole collective
trajectory set H̃ . U(τ) is the uniform distribution and Π(τ) is
the trajectory distribution from the underlying policy π which
is defined as Π(τ) =

∏Tτ
j=1 π(otj |stj ). In practice, π(o|s) is

usually estimated via a deep neural network, and in this work it
share shares the same main architecture with Cerebellar Value
Networks (CVNet) [16]. Following the derivations in [1], the
gradient g(W ) = R̃− F (W ) can be estimated by

g(W ) = R̃−
∑
τ∈ĥ

U(τ)Π(τ)−1efπ(R̂(τ);W )∑
τ ′∈ĥ U(τ ′)Π(τ ′)−1efπ(R̂(τ ′);W )

R̂(τ). (5)

We can finally obtain the weight vector W̃ = (w̃1, w̃2)T

corresponding to the underlying policy by iteratively applying
the gradient descent defined in (5) until convergence reached.

B. A Joint Estimation Approach using Distributional Rein-
forcement Learning

Assuming w̃1 and w̃2 are the learned weights of the two
objectives using drivers’ trajectories collected by running some
underlying policy π, the scalarization function fπ defined
in Section III-A can also be applied to the distribution
of the cumulative rewards Zπ(s) to obtain a single return
SZπ(s; W̃ ) =

∑2
i=1 w̃iZ

π
i (s), which is the weighted-sum of

Zπ1 (s) and Zπ2 (s). SV π(s; W̃ ) is then given by

SV π(s; W̃ ) = E(SZπ(s; W̃ )) =

2∑
i=1

w̃iV
π
i (s) (6)

We now introduce a novel estimation approach which com-
bines IQN and DQN to jointly learn the value functions V π1 (s)
and V π2 (s) of the two objectives, which are the expectations
of the two return distributions Zπ1 (s) and Zπ2 (s). IQN is from
the distribution perspective and DQN directly estimates the
value functions. In particular, IQN focuses on Zπ1 (s) and

Zπ2 (s) while DQN pays attention to the weighted sum of
the two value functions SV π . By utilizing the distributional
information and capturing the stochasticity, the joint training
process has a much more robust performance in practice than
simply estimating V π1 (s) and V π2 (s) using DQN. Abusing the
notation, we use Vi and Zi from now on to represent the
value function and the corresponding distribution for the i-th
objective when the underlying policy π is provided.

Individual IQN loss for each objective.
In this paper, we model the distribution of Zi by a weighted

mixture of N Diracs [21]:

Zi,q,τ̂ (s) :
D
=

N−1∑
j=0

(τj+1 − τj)δqij (s) for i ∈ {1, 2}, (7)

where δz denote a Dirac at z ∈ R, τ1, . . . , τN−1 represent
N − 1 adjustable fractions satisfying τj−1 < τj with τ0 = 0
and τN = 1. For simplicity, we denote τ̂j =

τj+τj+1

2 , and
the optimal corresponding quantile values qij is given by
qij = F−1

Zi
(τ̂j) where F−1

Zi
, i = 1, 2 is the inverse function

of cumulative distribution function FZi(z) = Pr(Zi < z). In
this paper, we employ IQN to train the quantile functions.

We follow the main architecture of CVNet to learn the
state embedding ψ : S → Rd, which is shared by the two
objectives. We also compute the embedding of quantile level
τ , denoted by φi(τ) ∈ Rd for each i, and its j-th dimension
φi,j(τ) is parametrized as follows,

φi,j(τ) := ReLU(

n−1∑
k=0

cos(kπτ)wijk + bij), (8)

where wijk and bij are network parameters. Now we can build
the quantile approximation FZi,θi(τ) ≈ D(ψ(s; ξ)�φi(τ ; ηi))
where D : Rd → R is a fully-connected layer and the input is
an element-wise (Hadamard) product of ψ(s; ξ) and φi(τ ; ηi).
θi = (ξ, ηi) contains all the parameters to be learned. Let Zi
and Z ′i be the random variables of the total return at s and s′

for the i-th objective, the weighted temporal difference (TD)
error for quantile locations τ and τ ′ at step t is defined by

δti,τ,τ ′ = R̂it + γ∆tF−1
Z′
i,θi

(τ)− F−1
Zi,θi

(τ ′),∀i = 1, 2 (9)

The quantile value networks can be trained by minimizing the
Huber quantile regression loss [6],

ρκτ (δi,τ,τ ′) = |τ − 1{δi,τ,τ ′ < 0}|Lκ(δi,τ,τ ′)

κ

where 1 is the indicator function and Lκ is the Huber loss,

Lκ(x) =

{
1
2x

2, if x ≤ κ;
κ(|x| − 1

2κ), otherwise. (10)

The final IQN loss for the i-th objective is given by

Li(st, R̂it, st+∆t ; θi) =
1

N

N−1∑
k=0

N−1∑
j=0

ρκτ̂k(δti,τ̂k,τ̂ ′
j
), (11)

for i ∈ {1, 2}, where τ̂k = τk+τk+1

2 and τ̂ ′j =
τ ′
j+τ

′
j+1

2 . τk, τ ′j ∼
U([0, 1]) are iid samples used to estimate the loss.



DQN loss of the scalarized value function SV .
The equation (6) shows that SV can be factorized as

the weighted sum of Vi. We would like the learning of
distributional RL to exploit this structure directly. To that
end, we make use of the observation that the expectation
of a random variable can be expressed as an integral of the
quantiles, e.g., Vi =

∫ 1

0
F−1
Zi

(τ)dτ . Applying it to (6) and
using the Monte Carlo estimate, we obtain SV (s; W̃ ) =∑2
i=1 w̃iVi(s) ≈

∑2
i=1 w̃i

1
N

∑N
j=1 F

−1
Zi(s)

(τj) where N is the
Monte Carlo sample size and τj’s are the uniformly sampled
quantile points from above. The temporal difference (TD) error
for SV is defined by

TDt
SV = fπ(R̂t; W̃ ) + γ∆tSV (st+∆t ; W̃ )− SV (st; W̃ )

= fπ(R̂t; W̃ ) + γ∆t

2∑
i=1

w̃i
1

N

N∑
k=1

F−1
Zi(st+∆t )

(τk)

−
2∑
i=1

w̃i
1

N

N∑
j=1

F−1
Zi(st)

(τj), (12)

based on which we can build the loss function LSV = 1
2TD

2
SV

for the DQN part.

Joint training of IQN and DQN.
The final joint training objective regarding Z1, Z2 and SV

is thus given by

L(θ) = λ1{L1(θ1) + L2(θ2)}+ λ2LSV (θ) + λ3R(θ)

=
λ1

N

2∑
i=1

N−1∑
k=0

N−1∑
j=0

ρκτ̂k (δ
t
i,τ̂k,τ̂

′
j
) +

λ2

2
TDtSV

2
+ λ3R(θ) (13)

where θ is the concatenation of θ1 and θ2. λ1, λ2, λ3 > 0 are
hyper-parameters.R(θ) is an added penalty term to control the
global Lipschitz constant in ψ(s). The joint loss given in (13)
accounts for both the individual uncertainty and the mutural
information of the two objectives. Some empirical comparison
between the proposed loss and the way to minimize L1, L2

separately is presented later in the experiment section.

C. Planning With Multi-driver Dispatching

The order-dispatching system of ride-hailing platforms is
a multi-agent environment with multiple drivers making se-
quential decisions. The platform keeps assigning passengers
to nearby idle drivers within a continuous set of small time
intervals. Each ride request cannot be paired with multiple
drivers to avoid assignment conflicts. A utility score µjk is
used to indicate the value of matching each driver k to an
order j, and the global order dispatching algorithm in each
decision window is equivalent to solving a bipartite matching
problem as follows:

arg max
xij

M∑
j=0

N∑
k=0

µjkxjk,

s.t.
M∑
j=0

xjk ≤ 1 ∀k;

N∑
k=0

xjk ≤ 1 ∀j;

xjk = 0 if cjk > ε ∀j, k,

where

xjk =

{
1 if order j is assigned to driver k;
0 if order j is not assigned to driver k.

which can be solved by the Hungarian algorithm [12]. We
denote the Temporal Difference between the expected return
a driver k accepts order j and that the driver stays idle as
Ai(j, k) for the i-th objective. In this case, the utility function
µjk could be computed as below,

µjk = w1A1(j, k) + w2A2(j, k) + Ω · Ujk (14)

where

Ai(j, k) = R̂i,jk + γkjkVi(sk)− Vi(sj) for i ∈ {1, 2} (15)

and R̂i,jk = Ri,jk
(γkjk−1)
kij(γ−1) , i ∈ {1, 2}. R1,jk here denotes

the trip fee driver k receives by serving order j, R2,jk

is the estimated demand-supply relationship of the location
where the trip ends. kjk represents the trip duration, Ujk
characterizes the user experience, and Ω ≥ 0 is the hyper-
parameter. In practice, Ujk is usually set to be the negative
distance between driver k and order j, which aims to reducing
the waiting time of the passenger. Our goal is to find the
optimal W ∗ = (w∗1 , w

∗
2)T to maximize the platform metrics

of interest, such as TDI, ORR and OCR, which reflect the
market equilibrium. In practice, we perform grid search within
a wide range of (w1, w2) to find the optimal combination.
To be specific, we first determine a wide range of w2 with
w∗1 = w̃1 being fixed and then keep updating w2 until we
find the optimal choice of w∗2 which maximizes averaged TDI,
ORR and OCR for some representative days.

IV. EXPERIMENTS

To provide a deeper insight of the proposed MODRL
method, we evaluate it offline on a realistic multi-driver simu-
lation environment using real data collected from a large-scale
ride-hailing platform to validate its effectiveness in improving
TDI and users’ experience. Both demands and supplies are ini-
tialized at the beginning of the day, and then evolves following
the simulator’s transition dynamics (including drivers getting
online/offline, driver movement with passengers and idle driver
random movement). The simulated environment captures all
the essential elements of the online system, with its results
highly relevant (less than 2% difference from the real world)
and insightful to production deployment.

A. Experiment Setting

We collect demand-supply data from 09/01/2019 to
11/10/2019 in three cities served by the ride-hailing platform,
A (balanced supply and demand), B (relatively under-supplied)
and C (relatively over-supplied). City B has higher chance of
supply shortage than the other two cities. City A is more
balanced with more hexagon cells having demand-supply
differences close to zero. We split each city area into thousands
of non-overlapping hexagonal grids (radius = 700m), and
compute the spatio-temporal relationship R2 as the demand-
supply differences in each 10-minute time interval. The first
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Fig. 1: Loss curves of the joint training described in Section
III-B and the separate training for cities A and B

two months of the dataset, from 09/01/2019 to 10/31/2019,
were used for model training, while four weekdays and one
weekend from the last week were for testing. The daily number
of drivers in Cities A, B, C are around 26K, 24K and 11K,
that contribute in average 538K, 370K and 166K transitions
per day. We assume that all drivers as identically distributed
such that the dispatching policy models the population mean.

Fig. 2: (a) TDI and (b) ORR improvement of compared
methods over baseline across three different cities

We process the raw data to generate an efficient training
sample for MOIRL. First, we sort all the charging and idle
movements of each driver by time within a daily cycle
from 4:00 a.m. to 4:00 a.m. the next day. Small vacancy
records between any two trip records that are less than one
hour apart are combined together to build a complete idle
movement. We add the grid-based demand-supply difference
(supply subtracted from demand) at the destination for each
transition, the length of which is converted into 10-minute
intervals with rounding. Finally, we use a neural network with
a CVNet-based architecture to learn the probability of each
state-action pair under policy π. Without loss of generality,
we fix w̃1 = 1 in training and iteratively update w2 until
convergence is reached.

We give a brief description below of the policies that we
compare in this paper. The variations come from the way
the utility scores µjk in the bipartite graph are computed:
(1) Baseline 1, µjk is the negative distance between driver
k and order j; (2) Baseline 2, µjk is the immediate earning

by assigning order j to driver k; (3) CVNet [16], awhich
only optimizes the expected future income of each agent
(driver) individually (w2 = 0); (4) MODRL1, using weights
W̃ obtained from MOIRL in planning; (5) MODRL2, using
optimal weights W ∗ obtained by grid search in planning.
According to the empirical results, the background weight w̃2

is close to zero for three cities which ignores the effect of
demand-supply differences while a significantly nonzero w∗2
(City A: 1, City B: 0.7, City C: 0.5) is determined via on-line
searching to improve the dispatching efficiency.

To be fair, we fix γ = 0.94 for all the compared meth-
ods, which is in use by the real-world dispatching system.
Since R̂2,jk is unknown at the decision making point, we
take the average of the same weekday or weekend from
the four training weeks as an prediction of R̂2,jk. MODRL
follows most of the main CVNet setting in [16], and use
λ1 = λ2 = 1, λ3 = 0.001 in (13), which achieves the greatest
robustness in model training. Figure 1 shows that the joint
training approach given by (13) achieves a faster convergence
rate and more stable loss control than individually learning the
two return distributions L1 and L2.

TDI ORR OCR
City A 0.79± 0.36 0.82± 0.25 0.72± 0.29
City B 1.47± 0.53 1.66± 0.45 1.34± 0.38
City C 0.57± 0.25 0.60± 0.22 0.53± 0.17

TABLE I: (%) improvement of MODRL2 over MODRL1

B. Dispatching Results

Fig. 3: TDI, ORR, and OCR improvement of Z1 and Z2 at
0.4, 0.5, and 0.6 quantile levels over V1 and V2. The best
combinations are marked by red.

Figure 2(b), (c) plot the simulation results averaged over five
testing days. For all the three metrics, the results by the five
compared methods are standardized with respect to Baseline1.
We notice that, MODRL1 achieves close or slightly better
results than CVNet across cities and days since MODRL1
pays very limited attention to the supply-demand equilibrium
by using a small w̃2 in planning. MODRL2 significantly
outperforms MODRL1 in all three cities, especially in City
B. As mentioned, City B suffers from more severe supply-
demand mismatch (higher proportions of non-zero demand-
supply differences across all spatio-temporal hexagons) and



thus benefits more from the MODRL2 policy, which helps
allocate supply resources from a more global view to improve
future supply-demand equilibrium. A detailed comparison
between MODRL1 and MODRL2 are presented in Table I.

We notice in the results that MODRL2 maintains a con-
sistent improvement over the second best policy MODRL1
across all three experimental cities. Compared to the SOTA
order dispatching algorithm CVNet, MODRL2 can achieve up
to 2% improvement, which in practice means tens of million
dollars increase in profit per year for a large-scale ride-sharing
company such as Uber and DiDi. As Table I shows, although
the (%) improvement varies across days which is largely due
to the supply-demand relationship of a certain day, a positive
increase in all three measurements is ensured. Among the three
measurements, ORR always achieves the largest improvement
when replacing MODRL1 with MODRL2, which verifies
our hypothesis that MODRL2 tries to optimize the supply-
demand equilibrium and subsequently increases the probability
a customer request being quickly answered.

All results provided above is entirely based on the value
functions, e.g. the expectations of two return distributions.
We also explore the effects of taking ’risk-seeking’ policies
by replacing V1, V2 in (15) with quantile values of Z1, Z2 at
different levels.

Figure 3 visualizes TDI, OAR and OFR improvement of
different Zi(τ) and Vi combinations over the baseline V1, V2

results in City A and B. We can clearly see that City A prefers
the ’risk-neutral’ policy, while City B achieves the optimal
platform efficiency by choosing Z1 at 0.6 quantile level and
Z2 at 0.4 quantile level.

V. CONCLUSION

This paper proposes a novel two-objective SMDP formula-
tion for the ride-hailing order dispatching problem. We employ
a joint RL algorithm to simultaneously learn distributions over
two returns and the expectation of their weighted sum. We
present empirical results to demonstrate the advantage of our
methods over prior order dispatching methods and the effects
of quantile values on platform efficiency.

Our proposed approach is still two-stage, while a more
ideal way is to combine learning and planning via an end-
to-end model. We would also like to see the application of the
proposed algorithm to other real-world matching problems. We
leave these ideas as potential future directions.
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