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Same trip fee, pickup distance, 

passenger features, etc.
§ Person A (-> hot) 
§ Person B (-> cold)

Which one to fulfill?

Reduce total 
idling time of 
the drivers!
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QUESTIONS

What defines a hot/cold area?

Why reinforcement learning (why not supervised learning)? 



A SEMI-MDP FORMULATION

State, s≔(l,μ,υ) is the
§ geo-coordinates (l) of the driver

§ the raw time stamp (μ)
§ the contextual feature vector (υ), e.g. the supply-demand 

conditions, driver service statics, etc.

Option, o the k-step transition of the driver 
Reward, R is the total fee collected for the trip

§ a function of s and o

Policy, π(o|s) is a function that
§ maps a state s to a distribution over the action space 

(stochastic policy) or a particular action (deterministic policy)



A SEMI-MDP FORMULATION

State value function, V(s):  expected  cumulative reward that. 
§ the  driver  will  gain  till  the  end  of  an  episode  if  he/she starts  at  state s and  follows  a  

policy π

§ Similar to standard MDPs, we can write Bellman equations for general policies and options 
given one-step transition (st, Rt, st+k)
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In what follows, we describe our SMDP formulation in Section 2
and highlight the di�erence between a standard MDP. The Lipschitz
regularized policy evaluation and CVNet structure are detailed in
Section 3, along with the context randomization technique we
use for feature learning that generalizes. Section 4 discuss how
to embed this neural network into a combinatorial problem for
policy improvement in the online multi-agent environment with
thousands of drivers. In Section 5 we discuss the application of
transfer learning in CVNet dispatching system. Experiment results
are presented in Section 6. And �nally Section 7 concludes the
paper.

2 A SEMI-MDP FORMULATION
We model the system as a Markov decision process endowed with
a set of temporally extended actions. Such actions are also known
as options and the corresponding decision problem is known as
a semi-Markov decision process, or SMDP (e.g., see [14]). In this
framework a driver interacts episodically with an environment at
some discrete time scale, t 2 T := {0, 1, 2, ...,T } until the terminal
time stepT is reached. On each time step, t , the driver perceives the
state of the environment, described by the feature vector st 2 S,
and on that basis chooses an option ot 2 Ost that terminates in
st 0 where t 0 = t + kot . As a response, the environment produces a
numerical reward rt+i for each intermediate step, e.g., i = 1, ...,kot .
We denote the expected rewards of the option model by rost :=
E{rt+1 +�rt+2 + ...+�kot �1rt+kot |st = s,ot = o} where 1 � � > 0
is the discount factor for the future reward. In the context of order
dispatching, we highlight the following speci�cs:

State, st consists of the geographical status of the driver lt , the
raw time stamp µt as well as the contextual feature vector given
by �t , i.e., st := (lt , µt ,�t ). The raw time stamp µt re�ects the time
scale in the real world and is independent of the discrete time t
that is de�ned for algorithmic purposes. We use �t to represent
the contextual feature vector at location lt and time µt . We split
contextual features into two categories, the dynamic features �dt
such as real-time characteristics of supplies and demands within the
vicinity of the given spatiotemporal point, and the static features
�st containing static properties such as dayofweek, driver service
statics, holiday indicator, etc. When the discussion is focused on
one particular time step we may ignore the subscript t and directly
write �d and �s .

Option, denoted as ot , represents the transition of the driver to a
particular spatiotemporal status in the future, i.e., ot := lt+kt where
kt = 0, 1, 2, ... is the duration of the transition which �nishes once
the driver reaches the destination. Executing option ot from state
st means starting the transition from origin lt to the destination
speci�ed by ot . This transition can happen due to either a trip
assignment or an idle movement. In the �rst case the option results
in a nonzero reward, while in the latter case an idle option leads
to a zero-reward transition that terminates at the place where the
next trip option is activated. Note that di�erent ot takes di�erent
time steps to �nish and the time extension is often larger than 1,
e.g., kt > 1, which is one of the main di�erences from standard
MDP.

Reward, Rt is the total fee collected from a trip with a driver
transition from st to st 0 by executing option ot . Rt is zero if the

Figure 2: Coarse Coding with Hierarchical Hexagon Grid.
The geo point (red) activates two grid cells (orange and blue).
The �nal representation is the average of the two grid cells’
embedding vectors.

Figure 3: A visualization of CVNet output on a single layer
of the hexagon grid system.

trip is generated from an idle movement. Conceptually Rt can
be considered as the sum of a sequence of immediate rewards
received at each unit time step while executing the option ot , e.g.,
Rt =

Õkt
i=1 rt+i . We use R̂t to denote the discounted total reward

over the duration of the option ot induced by the discount factor � ,
e.g., R̂t = rt+1 + �rt+2 + ... + �kt�1rt+kt .

Policy, � (o |s) speci�es the probability of taking option o in state
s regardless of the time step t . Executing � in the environment
generates a history of driver trajectories denoted as {�i }i 2H :=
{(si0,oi0, ri1, si1,oi1, ri2, ..., riTi , siTi )}i 2H whereH denotes the in-
dex set of the historical driver trajectories. Associated with the pol-
icy � is the state value functionV � (s) := E{ÕT

i=t+1 �
i�t�1ri |st =

s} which speci�es the value of a state s 2 S under the policy � as
the expected cumulative reward that the driver will gain starting
from s and following � till the end of an episode.

V � (s) := E{
T’

i=t+1
� i�t�1ri |st = s}

Given the above SMDP and the history trajectories H , our goal
is to estimate the value of the underlying policy. Similar to the

and options [14],

V � (s) = E{rt+1 + · · · + �kot �1rt+kot + �
kot V � (st+kot )|st = s}

= E{rost + �kot V � (st+kot )|st = s} (1)

where kot is the duration of the option selected by � at time t and
rost is the corresponding accumulative discounted reward received
through the course of the option.

Discussion. The Bellman equations (1) can be used as update
rules in dynamic-programming-like planning methods for �nding
the value function. The main divergence from the standard MDP
transition is that the update rules need to re�ect the fact that the
temporal extension from state to state spans di�erent time horizons.
As an example, consider one transition from st to st+kt resulted
from executing option ot . We can update the value function in this
case as follows,

V �+1(st ) rt+1 + · · · + �kt�1rt+kt + �
ktV � (st+kt ).

In the case of order dispatching, the total fee collected from the
transition is Rt . Assuming that Rt is spread uniformly across the
trip duration, we can then compute the discounted accumulative
reward R̂t as

R̂t =
Rt
kt
+ �

Rt
kt
+ · · · + �kt�1 Rt

kt

=
Rt (�kt � 1)
kt (� � 1)

, where 0 < � < 1, kt � 1

And the update rule for V becomes

V �+1(st ) 
Rt (�kt � 1)
kt (� � 1)

+ �ktV � (st+kt ). (2)

Note that compared to a standard MDP update rule without reward
discountRt+�ktV � (st+kt ), (2) acts e�ectively like a smooth version
of reward clipping that is commonly used to improve performance
in reinforcement learning [9].

3 DISPATCHING POLICY EVALUATIONWITH
NEURAL NETWORKS

We assume the online dispatching policy � is unknown and the
goal is to evaluate the value of the policy from the given historical
trajectories data. We use a neural network to approximate this value
function based on the historical trajectories. The network structure
is illustrated in Figure 1. Later we will discuss how to embed this
neural network into a combinatorial problem for policy improve-
ment in the online multi-agent environment with thousands of
drivers.

3.1 Cerebellar Embedding
Learning a good state representation is usually the key step to
solving a practical problem with neural networks. It is even more
so for a large scale problem like order dispatching which requires
the parse of complicated state information as the basis for long-
term reasoning in a ever changing environment. Here we propose
a method called cerebellar embedding that combines CMAC with
embedding to obtain a distributed state representation [6] that is
generalizable, extensible and robust. One way to view a CMAC is
to consider a sparse, coarse-coded function approximator which

uses multiple overlapping tilings of the state space to obtain a
feature representation. Each input point to the CMAC activates as
many tiles as the number of tilings used. The total number of tiles
is referred to as the size of the conceptual memory. The mapping
from input points to tiles is done such that points close together
in the input space have considerable overlap between their set of
activated tiles. Each tile in the conceptual memory is associated
with a weight in the actual memory which is iteratively updated
through training. And the output of CMAC is computed as the sum
of the weights of the activated tiles. Note that the size of the actual
memory does not need to match that of the conceptual memory. In
fact, the so-called ‘hashing trick’ [13] is often employed to reduce
the memory requirements – a consistent random collapsing of a
large set of tiles into a smaller one.

The cerebellar embedding extends CMACs by using an embed-
ding matrix as the actual memory and implements the mapping
using a sparse representation. In particular, the cerebellar embed-
ding de�nes multiple quantization (or tiling) functions {q1, ...,qn }.
Each function maps the continuous input to a unique string id indi-
cating one discretized region of the state space such that qi (s) ,
qj (s),8s, i , j. The set of activated tiles for a given input s is given
by {qi (s)}ni=1, and the set of all such strings constitutes the concep-
tual memory. The size of the actual memory is denoted as A which
does not have to equal to the size of the conceptual memory. Let
�(·) denote a mapping function from the conceptual memory to the
range 0, 1, ...,A� 1. The perfect mapping is when no con�ict occurs,
e.g., �(qi (s)) , �(qj (s)),8i , j. Under the given set of quantization
functions, we obtain the activation vector, denoted as c(s) 2 RA, by
iteratively adding 1 to the �(qi (s))-th entry of c(s) (initialized to 0)
for each qi , e.g., c�(qi )(s) c�(qi )(s) + 1,8i . Hence c(s) contains at
most n non-zero entries (exactly n when it is perfect mappings) and
is a sparse vector since n ⌧ A.

Finally, we initiate a random embedding matrix �M 2 RA⇥m as
the actual memory. Each tile in the conceptual memory is associated
with a row in �M which is a dense m-dimensional vector. The
sparse activation vector c(s) is multiplied by the embedding matrix,
yielding the �nal dense representation of the input point x , i.e.,
c(s)T �M

n where n is the number of used quantization functions and
the embedding matrix �M is iteratively updated during training.
Note that the dot product c(s)T �M grow linearly in magnitude with
respect to the number of tilings so we scale it by 1

n to prevent
diminishing gradients.

3.1.1 Hierarchical Coarse-coding in the location space. To quantize
the geographical space, we use a hierarchical hexagon tiling system
(illustrated in Figure 2). Using a hexagon as the tile shape is bene-
�cial since hexagons have only one distance between a hexagon
centerpoint and its neighbors. The hexagon tiling system we use
supports multiple resolutions, with each �ner resolution having
tiles with one seventh the area of the coarser resolution. Having
such hierarchical quantization with di�erent resolutions enables
the information aggregation (and, in turn, the learning) to happen
at di�erent abstraction levels automatically adaptive to the nature
of the geographical district, e.g., downtown, suburbs, community
parks, etc.



A SEMI-MDP FORMULATION

State value function, V(s):  expected  cumulative reward that. 
§ the  driver  will  gain  till  the  end  of  an  episode  if  he/she starts  at  state s and  follows  a  

policy π

§ Similar to standard MDPs, we can write Bellman equations for general policies and options 
given one-step transition (st, Rt, st+k)

A Deep Value-network Based Approach for Multi-Driver Order Dispatching KDD ’19, August 4–8, 2019, Anchorage, AK, USA

In what follows, we describe our SMDP formulation in Section 2
and highlight the di�erence between a standard MDP. The Lipschitz
regularized policy evaluation and CVNet structure are detailed in
Section 3, along with the context randomization technique we
use for feature learning that generalizes. Section 4 discuss how
to embed this neural network into a combinatorial problem for
policy improvement in the online multi-agent environment with
thousands of drivers. In Section 5 we discuss the application of
transfer learning in CVNet dispatching system. Experiment results
are presented in Section 6. And �nally Section 7 concludes the
paper.

2 A SEMI-MDP FORMULATION
We model the system as a Markov decision process endowed with
a set of temporally extended actions. Such actions are also known
as options and the corresponding decision problem is known as
a semi-Markov decision process, or SMDP (e.g., see [14]). In this
framework a driver interacts episodically with an environment at
some discrete time scale, t 2 T := {0, 1, 2, ...,T } until the terminal
time stepT is reached. On each time step, t , the driver perceives the
state of the environment, described by the feature vector st 2 S,
and on that basis chooses an option ot 2 Ost that terminates in
st 0 where t 0 = t + kot . As a response, the environment produces a
numerical reward rt+i for each intermediate step, e.g., i = 1, ...,kot .
We denote the expected rewards of the option model by rost :=
E{rt+1 +�rt+2 + ...+�kot �1rt+kot |st = s,ot = o} where 1 � � > 0
is the discount factor for the future reward. In the context of order
dispatching, we highlight the following speci�cs:

State, st consists of the geographical status of the driver lt , the
raw time stamp µt as well as the contextual feature vector given
by �t , i.e., st := (lt , µt ,�t ). The raw time stamp µt re�ects the time
scale in the real world and is independent of the discrete time t
that is de�ned for algorithmic purposes. We use �t to represent
the contextual feature vector at location lt and time µt . We split
contextual features into two categories, the dynamic features �dt
such as real-time characteristics of supplies and demands within the
vicinity of the given spatiotemporal point, and the static features
�st containing static properties such as dayofweek, driver service
statics, holiday indicator, etc. When the discussion is focused on
one particular time step we may ignore the subscript t and directly
write �d and �s .

Option, denoted as ot , represents the transition of the driver to a
particular spatiotemporal status in the future, i.e., ot := lt+kt where
kt = 0, 1, 2, ... is the duration of the transition which �nishes once
the driver reaches the destination. Executing option ot from state
st means starting the transition from origin lt to the destination
speci�ed by ot . This transition can happen due to either a trip
assignment or an idle movement. In the �rst case the option results
in a nonzero reward, while in the latter case an idle option leads
to a zero-reward transition that terminates at the place where the
next trip option is activated. Note that di�erent ot takes di�erent
time steps to �nish and the time extension is often larger than 1,
e.g., kt > 1, which is one of the main di�erences from standard
MDP.

Reward, Rt is the total fee collected from a trip with a driver
transition from st to st 0 by executing option ot . Rt is zero if the

Figure 2: Coarse Coding with Hierarchical Hexagon Grid.
The geo point (red) activates two grid cells (orange and blue).
The �nal representation is the average of the two grid cells’
embedding vectors.

Figure 3: A visualization of CVNet output on a single layer
of the hexagon grid system.

trip is generated from an idle movement. Conceptually Rt can
be considered as the sum of a sequence of immediate rewards
received at each unit time step while executing the option ot , e.g.,
Rt =

Õkt
i=1 rt+i . We use R̂t to denote the discounted total reward

over the duration of the option ot induced by the discount factor � ,
e.g., R̂t = rt+1 + �rt+2 + ... + �kt�1rt+kt .

Policy, � (o |s) speci�es the probability of taking option o in state
s regardless of the time step t . Executing � in the environment
generates a history of driver trajectories denoted as {�i }i 2H :=
{(si0,oi0, ri1, si1,oi1, ri2, ..., riTi , siTi )}i 2H whereH denotes the in-
dex set of the historical driver trajectories. Associated with the pol-
icy � is the state value functionV � (s) := E{ÕT

i=t+1 �
i�t�1ri |st =

s} which speci�es the value of a state s 2 S under the policy � as
the expected cumulative reward that the driver will gain starting
from s and following � till the end of an episode.

V � (s) := E{
T’

i=t+1
� i�t�1ri |st = s}

Given the above SMDP and the history trajectories H , our goal
is to estimate the value of the underlying policy. Similar to the

and options [14],

V � (s) = E{rt+1 + · · · + �kot �1rt+kot + �
kot V � (st+kot )|st = s}

= E{rost + �kot V � (st+kot )|st = s} (1)

where kot is the duration of the option selected by � at time t and
rost is the corresponding accumulative discounted reward received
through the course of the option.

Discussion. The Bellman equations (1) can be used as update
rules in dynamic-programming-like planning methods for �nding
the value function. The main divergence from the standard MDP
transition is that the update rules need to re�ect the fact that the
temporal extension from state to state spans di�erent time horizons.
As an example, consider one transition from st to st+kt resulted
from executing option ot . We can update the value function in this
case as follows,

V �+1(st ) rt+1 + · · · + �kt�1rt+kt + �
ktV � (st+kt ).

In the case of order dispatching, the total fee collected from the
transition is Rt . Assuming that Rt is spread uniformly across the
trip duration, we can then compute the discounted accumulative
reward R̂t as

R̂t =
Rt
kt
+ �

Rt
kt
+ · · · + �kt�1 Rt

kt

=
Rt (�kt � 1)
kt (� � 1)

, where 0 < � < 1, kt � 1

And the update rule for V becomes

V �+1(st ) 
Rt (�kt � 1)
kt (� � 1)

+ �ktV � (st+kt ). (2)

Note that compared to a standard MDP update rule without reward
discountRt+�ktV � (st+kt ), (2) acts e�ectively like a smooth version
of reward clipping that is commonly used to improve performance
in reinforcement learning [9].

3 DISPATCHING POLICY EVALUATIONWITH
NEURAL NETWORKS

We assume the online dispatching policy � is unknown and the
goal is to evaluate the value of the policy from the given historical
trajectories data. We use a neural network to approximate this value
function based on the historical trajectories. The network structure
is illustrated in Figure 1. Later we will discuss how to embed this
neural network into a combinatorial problem for policy improve-
ment in the online multi-agent environment with thousands of
drivers.

3.1 Cerebellar Embedding
Learning a good state representation is usually the key step to
solving a practical problem with neural networks. It is even more
so for a large scale problem like order dispatching which requires
the parse of complicated state information as the basis for long-
term reasoning in a ever changing environment. Here we propose
a method called cerebellar embedding that combines CMAC with
embedding to obtain a distributed state representation [6] that is
generalizable, extensible and robust. One way to view a CMAC is
to consider a sparse, coarse-coded function approximator which

uses multiple overlapping tilings of the state space to obtain a
feature representation. Each input point to the CMAC activates as
many tiles as the number of tilings used. The total number of tiles
is referred to as the size of the conceptual memory. The mapping
from input points to tiles is done such that points close together
in the input space have considerable overlap between their set of
activated tiles. Each tile in the conceptual memory is associated
with a weight in the actual memory which is iteratively updated
through training. And the output of CMAC is computed as the sum
of the weights of the activated tiles. Note that the size of the actual
memory does not need to match that of the conceptual memory. In
fact, the so-called ‘hashing trick’ [13] is often employed to reduce
the memory requirements – a consistent random collapsing of a
large set of tiles into a smaller one.

The cerebellar embedding extends CMACs by using an embed-
ding matrix as the actual memory and implements the mapping
using a sparse representation. In particular, the cerebellar embed-
ding de�nes multiple quantization (or tiling) functions {q1, ...,qn }.
Each function maps the continuous input to a unique string id indi-
cating one discretized region of the state space such that qi (s) ,
qj (s),8s, i , j. The set of activated tiles for a given input s is given
by {qi (s)}ni=1, and the set of all such strings constitutes the concep-
tual memory. The size of the actual memory is denoted as A which
does not have to equal to the size of the conceptual memory. Let
�(·) denote a mapping function from the conceptual memory to the
range 0, 1, ...,A� 1. The perfect mapping is when no con�ict occurs,
e.g., �(qi (s)) , �(qj (s)),8i , j. Under the given set of quantization
functions, we obtain the activation vector, denoted as c(s) 2 RA, by
iteratively adding 1 to the �(qi (s))-th entry of c(s) (initialized to 0)
for each qi , e.g., c�(qi )(s) c�(qi )(s) + 1,8i . Hence c(s) contains at
most n non-zero entries (exactly n when it is perfect mappings) and
is a sparse vector since n ⌧ A.

Finally, we initiate a random embedding matrix �M 2 RA⇥m as
the actual memory. Each tile in the conceptual memory is associated
with a row in �M which is a dense m-dimensional vector. The
sparse activation vector c(s) is multiplied by the embedding matrix,
yielding the �nal dense representation of the input point x , i.e.,
c(s)T �M

n where n is the number of used quantization functions and
the embedding matrix �M is iteratively updated during training.
Note that the dot product c(s)T �M grow linearly in magnitude with
respect to the number of tilings so we scale it by 1

n to prevent
diminishing gradients.

3.1.1 Hierarchical Coarse-coding in the location space. To quantize
the geographical space, we use a hierarchical hexagon tiling system
(illustrated in Figure 2). Using a hexagon as the tile shape is bene-
�cial since hexagons have only one distance between a hexagon
centerpoint and its neighbors. The hexagon tiling system we use
supports multiple resolutions, with each �ner resolution having
tiles with one seventh the area of the coarser resolution. Having
such hierarchical quantization with di�erent resolutions enables
the information aggregation (and, in turn, the learning) to happen
at di�erent abstraction levels automatically adaptive to the nature
of the geographical district, e.g., downtown, suburbs, community
parks, etc.
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be further augmented due to either long chain of downstream tasks
or simply large scale of the inputs, which can cause instability
and abnormal behavior at the system level. To obtain robustness
against perturbations, mathematically we would like the output of
the value function to be bounded, with respect to the p-norm of
interest | | · | |p , by its input state for all state in S, e.g.,

| |V (s1) �V (s2)| |p  Lp | |s1 � s2 | |p ,8s1, s2 2 S. (3)

Here the value of Lp , known as the Lipschitz constant, represents
the worst case variation of V with respect to a change in its input
s . In this case we would like to regularize Lp during training for a
robust value function.

An upper bound for the Lipschitz constant of a neural network
can be computed as the product of the Lipschitz constant of each
individual layer of the network. This is easy to show once we
notice that neural networks can be expressed as a series of function
compositions, e.g., V (s) = (�h � �h�1 · · · � �1)(s).

L(V )  �h
i=1L(�i ) (4)

Hence to control the neural network’s global Lipschitz constant it is
su�cient to regularize the Lipschitz for each individual layer. The
value network that we use, as depicted in Figure 1, consists of both
the cerebellar embedding layer and the multilayer perceptron. We
now give the Lipschitz constants of these two layers as a function
of their parameters.

Multilayer Perceptron: Assume one linear layer followed by
an ReLU activation. The Lipschitz of the ReLU operation is bounded
by 1, e.g., Lr elup = 1, since the maximum absolute subgradient of
ReLU is 1. For the linear layer, assuming it is parameterized by a
weight matrix � l and a bias vector bl , we can derive its Lipschitz
constant as follows,

| |� l s1 + bl � (� l s2 + bl )| |p  Llp | |s1 � s2 | |p

) Llp �
| |� l (s1 � s2)| |p
| |s1 � s2 | |p

) Llp = sup
s,0

| |� l s | |p
| |s | |p

, s = s1 � s2

which is the operator norm of weight matrix � l . When p = 1 the
Lipschitz constant of the linear layer Llp is given by the maximum
absolute column sum of the weight matrix; when p = 1 it is the
maximum absolute row sum and when p = 2 it is the spectral norm
of � l which can be approximated using the power method.

Cerebellar Embedding: Recall that in Section 3.1 the embed-
ding process can be expressed as a sparse dot product c(s)T �M

n
where c(s) is a sparse vector with at most n non-zero entries. Since
this operation is linear in c(s), the Lipschitz can be computed simi-
larly as that of the linear layer. In this case it is the operator norm
of the transpose of the embedding matrix �M . Note that because
quantizations are used, there will be a sudden change in the output
value at the boundary of the quantization. This will not be an issue
in practice as long as the scale of the change is controlled. That is if
we regularize the operator norm of �M . In fact, note that the vector
c(s1)� c(s2) can have at most 2n non-zero entries for any s1, s2, e.g.,
when s1 and s2 have no overlap in the conceptual memory. Hence

the output of the cerebellar embedding layer is bounded as follows,

| |c(x1)T �M � c(x2)T �M | |p/n
= | |(c(x1) � c(x2))T �M | |p/n  2max

i
| |�Mi | |p

where�Mi is the ith row of�M .Whenp = 1, for example,maxi | |�Mi | |1 =
| |�M | |1 which is the in�nity norm of the matrix �M .

3.3 Policy Evaluation
Given the semi-MDP de�ned in Section 2, we want to solve for the
value function under the unknown dispatching policy � . We collect
the historical driver trajectories and divide it into a set of tuples
with each representing one driver transition spending k time steps
from s to s 0 during which the driver receives a total trip fee R, i.e.,
(s,R, s 0). Training follows the Double-DQN structure [16] for better
training stability. The main value network is denoted as V � (s |� )
where � representing all trainable weights in the neural network,
and a target V -network V̂ � (s |�̂ ), maintained and synchronized
periodically with the main networkV � (s |� ), is used to evaluate the
update rule as given in (2). This update is converted into a loss to
be minimized L(� ), most commonly the squared loss. Following
the discussions in Section 3.2, we add a penalty term R(� ) on global
Lipschitz constant to the loss and introduce a penalty parameter
� > 0,
min
�

L(� ) + � · R(� ) :=

1
2
{V � (s |� ) � (R(�

k � 1)
k(� � 1) + �

kV̂ � (s 0 |�̂ ))}2 + � ·
h’
i=1

L(�i )
(5)

Context Randomization: During training we augment each his-
torical driver trajectory with contextual features {�i } extracted
from the production logging system. Contextual features, espe-
cially real-time supply/demand statistics, often come with high
variance, e.g., it is common to notice a ±30 minutes shift of the
rush hour peak. Another issue is the scheduling bias in the logging
system, e.g., logging triggered every 5 minutes, which can cause too
many failed feature associations when matching using the exact
value of the spatiotemporal states. To account for those bias in
the training and to build temporal invariance into the system, we
use context randomization (6) in the augmentation process. That
is, instead of matching with the exact spatiotemporal status, we
implement a procedure called hierarchical range query �(·), which
allows the speci�cation of a range for the given query and returns
a set of contextual features within that range, i.e., �(l, µ, r�) ✓ {�i }
where r� specify the query range for time µ such that all contextual
features within [µ � r�, µ + r�] are returned.

4 PLANNINGWITH MULTI-DRIVER
DISPATCHING

The production environment is intrinsically multi-agent with multi-
ple drivers ful�lling passengers orders at the same time. A matching
problem [19] is usually formulated at this stage to optimally assign
the orders collected within a dispatching window to a set of drivers,
while also avoiding assignment con�icts such as matching one or-
der with multiple drivers. A utility score �i j is used to indicate the
value of matching each driver i and order j pair, and the objective

Objective:
maximize the total utilities of the assignments where the utility scores are computed as the
Temporal Difference error between order’s destination state and driver ‘s current state, e.g.,

Algorithm 3.1 Regularized Policy Evaluation with Cerebellar
Value Network (CVNet)
1: Given: historical driver trajectories

{(si ,0,oi ,0, ri ,1, si ,1,oi ,1, ri ,2, ..., ri ,Ti , si ,Ti )}i 2H collected
by executing a (unknown) policy � in the environment.

2: Given: the hierarchical range query function �(l, µ, r�).
3: Given: n cerebellar quantization functions {q1, ...,qn }, regu-

larization parameter, max iterations, embedding memory size,
embedding dimension, memory mapping function, discount
factor, target update interval �,N ,A,m,�(·),� ,C > 0.

4: Compute training data from the driver trajectories
as a set of (state, reward, next state) tuples, e.g.,
{(si ,t ,Ri ,t , si ,t+ki ,t )}i 2H,t=0, ...,Ti where ki ,t is the du-
ration of the trip.

5: Initialize the state value network V with random weights �
(including both the embedding weights �M 2 RA⇥m and the
linear layer weights).

6: Initialize the target state value network V̂ with weights �̂ .
7: for � = 1, 2, · · · ,N do
8: Sample a random mini-batch {(si ,t ,Ri ,t , si ,t+ki ,t )} from the

training data.
9: Sample � randomly from the returned set of contextual fea-

tures given query l, µ, r� and add it to the state s .
�i ,t 2 �(li ,t , µi ,t , r�),

�i ,t+ki ,t 2 �(li ,t+ki ,t , µi ,t+ki ,t , r�)
(6)

10: Transform the mini-batch into a (feature, label) format,

e.g., {(xi ,�i )} where xi is si ,t and �i =
Ri ,t (� ki ,t �1)
ki ,t (��1) +

�ki ,t V̂ (si ,t+ki ,t )
11: Compute mini-batch gradient r | {xi ,�i }L(� )+�R(� ) accord-

ing to (5)
12: Perform a gradient descent step on � with r | {xi ,�i }L(� ) +

�R(� ).
13: if � mod C = 0 then
14: �̂  �
15: end if
16: end for
17: return V

while also avoiding assignment con�icts such as matching one or-
der with multiple drivers. A utility score �i j is used to indicate the
value of matching each driver i and order j pair, and the objective
of the matching problem is to maximize the total utilities of the
assignments argmaxx 2C

Õm
i=1

Õn
j=1 �i jxi j where {xi j } are binary

decision variables subject to a set of constraints C to ensure the
feasibility of the �nal assignment solution, e.g., each order is at most
assigned to one driver, etc. This problem can be solved by standard
matching algorithms, such as the Hungarian Method (a.k.a. KM
algorithm).

Similar to the work in [19], we use the Temporal Di�erence error
between order’s destination state sj and driver’s current state si
as the utility score �i j . Given the policy value function V (s) as

described above, this could be computed as below,

�i j = Ri j
(�ki j � 1)
ki j (� � 1)

+ �ki jV (sj ) �V (si ) + � ·Ui j (7)

where Ri j is the trip fee collected after the driver i deliver order j;
ki j is the time duration of the trip and � is the discount factor to
account for the future uncertainty. Aside from the long term driver
income captured in the �rst part of (7), we also add an additional
term � ·Ui j , � � 0 where Ui j characterizes the user experience
from both the driver i and the passenger j so that we optimize
not only the driver income but also the experience for both sides.
As an example, settingUi j to be the negative of driver-passenger
distance will have the e�ect of minimizing the waiting time for the
passenger.

4.1 Feature Marginalization via Distillation
V (sj ) in (7) represents the state value at order’s destination. The real
time dynamic features �d at the order’s destination, however, is not
available until the driver actually �nishes the trip. In other words,
we need a separate V-function that can evaluate the state value un-
der the absence of those real time dynamic features. Let us call this
V-function Ṽ . Given V � , Ṽ can be obtained through the marginal-
ization over those features, Ṽ � = E�d {V � (l, µ,�s ,�d )}. Here, the
contextual features � are split into two groups, the static features
�s and those dynamic features that require real-time computation
�d . The expectation is taken under the historical distribution of �d ,
e.g., p(�d |l, µ,�s ).

We make use of knowledge distillation to approximate this ex-
pectation, treating V as the teacher network and training Ṽ to
mimic the output of V . Figure 1 illustrates the network structures
of Ṽ which is built on top of the structure of V . V and Ṽ share the
same state representation layers to encourage common knowledge
transfer but distinguish from each other by having their own MLP
and �nal output layers. We use the full original training set forV as
the transfer set and evaluate V on l, µ,� sampled from the transfer
set to obtain the targets for Ṽ . We activate distillation during the
training of V before each model checkpoint. The weights of V , in-
cluding the shared weights, are frozen and only the MLP layers of Ṽ
are updated during distillation. We �nd that the distillation usually
converges in less than 5 epochs and the distillation becomes much
faster at later stage of the training as V training also converges. So
we anneal the number of distillation epochs in the beginning of
the training. Afterwards we only run one epoch of updating Ṽ for
every model checkpoint. We �nd that this helps prevent over�tting
while reducing the computation overhead to the training.

5 MULTI-CITY TRANSFER
Order dispatching can be naturally formulated as a multi-task learn-
ing problem with each task targeting at one particular regional area
(e.g., a city). Training a single agent for all tasks may not scale well
and can even raise many practical concerns in both deployment and
model serving. On the other hand, training each task independently
is clearly suboptimal. To e�ciently scale CVNet to multiple cities,
in this work we employ a method called CFPT (correlated-feature
progressive transfer) proposed by [17] for the single driver dispatch-
ing environment. In CFPT the state space (and its corresponding

Algorithm 3.1 Regularized Policy Evaluation with Cerebellar
Value Network (CVNet)
1: Given: historical driver trajectories

{(si ,0,oi ,0, ri ,1, si ,1,oi ,1, ri ,2, ..., ri ,Ti , si ,Ti )}i 2H collected
by executing a (unknown) policy � in the environment.

2: Given: the hierarchical range query function �(l, µ, r�).
3: Given: n cerebellar quantization functions {q1, ...,qn }, regu-

larization parameter, max iterations, embedding memory size,
embedding dimension, memory mapping function, discount
factor, target update interval �,N ,A,m,�(·),� ,C > 0.

4: Compute training data from the driver trajectories
as a set of (state, reward, next state) tuples, e.g.,
{(si ,t ,Ri ,t , si ,t+ki ,t )}i 2H,t=0, ...,Ti where ki ,t is the du-
ration of the trip.

5: Initialize the state value network V with random weights �
(including both the embedding weights �M 2 RA⇥m and the
linear layer weights).

6: Initialize the target state value network V̂ with weights �̂ .
7: for � = 1, 2, · · · ,N do
8: Sample a random mini-batch {(si ,t ,Ri ,t , si ,t+ki ,t )} from the

training data.
9: Sample � randomly from the returned set of contextual fea-

tures given query l, µ, r� and add it to the state s .
�i ,t 2 �(li ,t , µi ,t , r�),

�i ,t+ki ,t 2 �(li ,t+ki ,t , µi ,t+ki ,t , r�)
(6)

10: Transform the mini-batch into a (feature, label) format,

e.g., {(xi ,�i )} where xi is si ,t and �i =
Ri ,t (� ki ,t �1)
ki ,t (��1) +

�ki ,t V̂ (si ,t+ki ,t )
11: Compute mini-batch gradient r | {xi ,�i }L(� )+�R(� ) accord-

ing to (5)
12: Perform a gradient descent step on � with r | {xi ,�i }L(� ) +

�R(� ).
13: if � mod C = 0 then
14: �̂  �
15: end if
16: end for
17: return V

while also avoiding assignment con�icts such as matching one or-
der with multiple drivers. A utility score �i j is used to indicate the
value of matching each driver i and order j pair, and the objective
of the matching problem is to maximize the total utilities of the
assignments argmaxx 2C

Õm
i=1

Õn
j=1 �i jxi j where {xi j } are binary

decision variables subject to a set of constraints C to ensure the
feasibility of the �nal assignment solution, e.g., each order is at most
assigned to one driver, etc. This problem can be solved by standard
matching algorithms, such as the Hungarian Method (a.k.a. KM
algorithm).

Similar to the work in [19], we use the Temporal Di�erence error
between order’s destination state sj and driver’s current state si
as the utility score �i j . Given the policy value function V (s) as

described above, this could be computed as below,

�i j = Ri j
(�ki j � 1)
ki j (� � 1)

+ �ki jV (sj ) �V (si ) + � ·Ui j (7)

where Ri j is the trip fee collected after the driver i deliver order j;
ki j is the time duration of the trip and � is the discount factor to
account for the future uncertainty. Aside from the long term driver
income captured in the �rst part of (7), we also add an additional
term � ·Ui j , � � 0 where Ui j characterizes the user experience
from both the driver i and the passenger j so that we optimize
not only the driver income but also the experience for both sides.
As an example, settingUi j to be the negative of driver-passenger
distance will have the e�ect of minimizing the waiting time for the
passenger.

4.1 Feature Marginalization via Distillation
V (sj ) in (7) represents the state value at order’s destination. The real
time dynamic features �d at the order’s destination, however, is not
available until the driver actually �nishes the trip. In other words,
we need a separate V-function that can evaluate the state value un-
der the absence of those real time dynamic features. Let us call this
V-function Ṽ . Given V � , Ṽ can be obtained through the marginal-
ization over those features, Ṽ � = E�d {V � (l, µ,�s ,�d )}. Here, the
contextual features � are split into two groups, the static features
�s and those dynamic features that require real-time computation
�d . The expectation is taken under the historical distribution of �d ,
e.g., p(�d |l, µ,�s ).

We make use of knowledge distillation to approximate this ex-
pectation, treating V as the teacher network and training Ṽ to
mimic the output of V . Figure 1 illustrates the network structures
of Ṽ which is built on top of the structure of V . V and Ṽ share the
same state representation layers to encourage common knowledge
transfer but distinguish from each other by having their own MLP
and �nal output layers. We use the full original training set forV as
the transfer set and evaluate V on l, µ,� sampled from the transfer
set to obtain the targets for Ṽ . We activate distillation during the
training of V before each model checkpoint. The weights of V , in-
cluding the shared weights, are frozen and only the MLP layers of Ṽ
are updated during distillation. We �nd that the distillation usually
converges in less than 5 epochs and the distillation becomes much
faster at later stage of the training as V training also converges. So
we anneal the number of distillation epochs in the beginning of
the training. Afterwards we only run one epoch of updating Ṽ for
every model checkpoint. We �nd that this helps prevent over�tting
while reducing the computation overhead to the training.

5 MULTI-CITY TRANSFER
Order dispatching can be naturally formulated as a multi-task learn-
ing problem with each task targeting at one particular regional area
(e.g., a city). Training a single agent for all tasks may not scale well
and can even raise many practical concerns in both deployment and
model serving. On the other hand, training each task independently
is clearly suboptimal. To e�ciently scale CVNet to multiple cities,
in this work we employ a method called CFPT (correlated-feature
progressive transfer) proposed by [17] for the single driver dispatch-
ing environment. In CFPT the state space (and its corresponding
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be further augmented due to either long chain of downstream tasks
or simply large scale of the inputs, which can cause instability
and abnormal behavior at the system level. To obtain robustness
against perturbations, mathematically we would like the output of
the value function to be bounded, with respect to the p-norm of
interest | | · | |p , by its input state for all state in S, e.g.,

| |V (s1) �V (s2)| |p  Lp | |s1 � s2 | |p ,8s1, s2 2 S. (3)

Here the value of Lp , known as the Lipschitz constant, represents
the worst case variation of V with respect to a change in its input
s . In this case we would like to regularize Lp during training for a
robust value function.

An upper bound for the Lipschitz constant of a neural network
can be computed as the product of the Lipschitz constant of each
individual layer of the network. This is easy to show once we
notice that neural networks can be expressed as a series of function
compositions, e.g., V (s) = (�h � �h�1 · · · � �1)(s).

L(V )  �h
i=1L(�i ) (4)

Hence to control the neural network’s global Lipschitz constant it is
su�cient to regularize the Lipschitz for each individual layer. The
value network that we use, as depicted in Figure 1, consists of both
the cerebellar embedding layer and the multilayer perceptron. We
now give the Lipschitz constants of these two layers as a function
of their parameters.

Multilayer Perceptron: Assume one linear layer followed by
an ReLU activation. The Lipschitz of the ReLU operation is bounded
by 1, e.g., Lr elup = 1, since the maximum absolute subgradient of
ReLU is 1. For the linear layer, assuming it is parameterized by a
weight matrix � l and a bias vector bl , we can derive its Lipschitz
constant as follows,

| |� l s1 + bl � (� l s2 + bl )| |p  Llp | |s1 � s2 | |p

) Llp �
| |� l (s1 � s2)| |p
| |s1 � s2 | |p

) Llp = sup
s,0

| |� l s | |p
| |s | |p

, s = s1 � s2

which is the operator norm of weight matrix � l . When p = 1 the
Lipschitz constant of the linear layer Llp is given by the maximum
absolute column sum of the weight matrix; when p = 1 it is the
maximum absolute row sum and when p = 2 it is the spectral norm
of � l which can be approximated using the power method.

Cerebellar Embedding: Recall that in Section 3.1 the embed-
ding process can be expressed as a sparse dot product c(s)T �M

n
where c(s) is a sparse vector with at most n non-zero entries. Since
this operation is linear in c(s), the Lipschitz can be computed simi-
larly as that of the linear layer. In this case it is the operator norm
of the transpose of the embedding matrix �M . Note that because
quantizations are used, there will be a sudden change in the output
value at the boundary of the quantization. This will not be an issue
in practice as long as the scale of the change is controlled. That is if
we regularize the operator norm of �M . In fact, note that the vector
c(s1)� c(s2) can have at most 2n non-zero entries for any s1, s2, e.g.,
when s1 and s2 have no overlap in the conceptual memory. Hence

the output of the cerebellar embedding layer is bounded as follows,

| |c(x1)T �M � c(x2)T �M | |p/n
= | |(c(x1) � c(x2))T �M | |p/n  2max

i
| |�Mi | |p

where�Mi is the ith row of�M .Whenp = 1, for example,maxi | |�Mi | |1 =
| |�M | |1 which is the in�nity norm of the matrix �M .

3.3 Policy Evaluation
Given the semi-MDP de�ned in Section 2, we want to solve for the
value function under the unknown dispatching policy � . We collect
the historical driver trajectories and divide it into a set of tuples
with each representing one driver transition spending k time steps
from s to s 0 during which the driver receives a total trip fee R, i.e.,
(s,R, s 0). Training follows the Double-DQN structure [16] for better
training stability. The main value network is denoted as V � (s |� )
where � representing all trainable weights in the neural network,
and a target V -network V̂ � (s |�̂ ), maintained and synchronized
periodically with the main networkV � (s |� ), is used to evaluate the
update rule as given in (2). This update is converted into a loss to
be minimized L(� ), most commonly the squared loss. Following
the discussions in Section 3.2, we add a penalty term R(� ) on global
Lipschitz constant to the loss and introduce a penalty parameter
� > 0,
min
�

L(� ) + � · R(� ) :=

1
2
{V � (s |� ) � (R(�

k � 1)
k(� � 1) + �

kV̂ � (s 0 |�̂ ))}2 + � ·
h’
i=1

L(�i )
(5)

Context Randomization: During training we augment each his-
torical driver trajectory with contextual features {�i } extracted
from the production logging system. Contextual features, espe-
cially real-time supply/demand statistics, often come with high
variance, e.g., it is common to notice a ±30 minutes shift of the
rush hour peak. Another issue is the scheduling bias in the logging
system, e.g., logging triggered every 5 minutes, which can cause too
many failed feature associations when matching using the exact
value of the spatiotemporal states. To account for those bias in
the training and to build temporal invariance into the system, we
use context randomization (6) in the augmentation process. That
is, instead of matching with the exact spatiotemporal status, we
implement a procedure called hierarchical range query �(·), which
allows the speci�cation of a range for the given query and returns
a set of contextual features within that range, i.e., �(l, µ, r�) ✓ {�i }
where r� specify the query range for time µ such that all contextual
features within [µ � r�, µ + r�] are returned.

4 PLANNINGWITH MULTI-DRIVER
DISPATCHING

The production environment is intrinsically multi-agent with multi-
ple drivers ful�lling passengers orders at the same time. A matching
problem [19] is usually formulated at this stage to optimally assign
the orders collected within a dispatching window to a set of drivers,
while also avoiding assignment con�icts such as matching one or-
der with multiple drivers. A utility score �i j is used to indicate the
value of matching each driver i and order j pair, and the objective PlanningLearning

Policy Evaluation

Policy Improvement

• Planning using the new value network, which is fitted against data generated by the 
old value network

• Learning needs to strike a balance between fitting the target while avoiding divergence
from the previous value network, e.g., on-policy methods like PPO, TRPO, etc.

• Significant improvement is obtained by iterating between online planning and offline 
learning



ANSWERS

What defines a hot/cold area?
§ The expectation of a driver’s earning potential 

till the end of a day, e.g., long-term value

Why we care about long term value?
§ This is a sequence decision problem 
§ The dispatching action is temporally extended



ANSWERS

Why reinforcement learning (why not supervised learning)?
§ The value network is obtained from fitting the driver’s historical income (target)

§ The ”target” changes as soon as a new value network is deployed in the environment
§ Learning involves the balance between fitting the target while avoiding divergence from the 

previous value network, e.g., on-policy methods
§ Hard to do off-policy + importance sampling since we act by solving a combinatorial problem 

instead of according to a probability distribution

Why is this important?
§ Significant improvement by online + offline iterations
§ No ”labeling” cost 
§ No “investment budget” or “subsidizing” cost

§ The system automatically improves itself (reinforcement)



QUESTIONS

How to learn a good value network for dispatching?
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State representation

Lipschitz regularization 

Context randomization

Multi-city transfer

► Memory-based Neural Network
Distributed representation

► Hierarchical Hexagon Tiling System
To capture unique properties of specific streets, 

neighborhoods, and cities, we let the model learn a hierarchy 

of representations for areas of different size, with the precise 

location represented in the model by the sum of the 
embeddings of its location at various scales.In what follows, we describe our SMDP formulation in Section 2

and highlight the di�erence between a standard MDP. The Lipschitz
regularized policy evaluation and CVNet structure are detailed in
Section 3, along with the context randomization technique we
use for feature learning that generalizes. Section 4 discuss how
to embed this neural network into a combinatorial problem for
policy improvement in the online multi-agent environment with
thousands of drivers. In Section 5 we discuss the application of
transfer learning in CVNet dispatching system. Experiment results
are presented in Section 6. And �nally Section 7 concludes the
paper.

2 A SEMI-MDP FORMULATION
We model the system as a Markov decision process endowed with
a set of temporally extended actions. Such actions are also known
as options and the corresponding decision problem is known as
a semi-Markov decision process, or SMDP (e.g., see [14]). In this
framework a driver interacts episodically with an environment at
some discrete time scale, t 2 T := {0, 1, 2, ...,T } until the terminal
time stepT is reached. On each time step, t , the driver perceives the
state of the environment, described by the feature vector st 2 S,
and on that basis chooses an option ot 2 Ost that terminates in
st 0 where t 0 = t + kot . As a response, the environment produces a
numerical reward rt+i for each intermediate step, e.g., i = 1, ...,kot .
We denote the expected rewards of the option model by rost :=
E{rt+1 +�rt+2 + ...+�kot �1rt+kot |st = s,ot = o} where 1 � � > 0
is the discount factor for the future reward. In the context of order
dispatching, we highlight the following speci�cs:

State, st consists of the geographical status of the driver lt , the
raw time stamp µt as well as the contextual feature vector given
by �t , i.e., st := (lt , µt ,�t ). The raw time stamp µt re�ects the time
scale in the real world and is independent of the discrete time t
that is de�ned for algorithmic purposes. We use �t to represent
the contextual feature vector at location lt and time µt . We split
contextual features into two categories, the dynamic features �dt
such as real-time characteristics of supplies and demands within the
vicinity of the given spatiotemporal point, and the static features
�st containing static properties such as dayofweek, driver service
statics, holiday indicator, etc. When the discussion is focused on
one particular time step we may ignore the subscript t and directly
write �d and �s .

Option, denoted as ot , represents the transition of the driver to a
particular spatiotemporal status in the future, i.e., ot := lt+kt where
kt = 0, 1, 2, ... is the duration of the transition which �nishes once
the driver reaches the destination. Executing option ot from state
st means starting the transition from origin lt to the destination
speci�ed by ot . This transition can happen due to either a trip
assignment or an idle movement. In the �rst case the option results
in a nonzero reward, while in the latter case an idle option leads
to a zero-reward transition that terminates at the place where the
next trip option is activated. Note that di�erent ot takes di�erent
time steps to �nish and the time extension is often larger than 1,
e.g., kt > 1, which is one of the main di�erences from standard
MDP.

Reward, Rt is the total fee collected from a trip with a driver
transition from st to st 0 by executing option ot . Rt is zero if the
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Activated Cells

Figure 2: Coarse Coding with Hierarchical Hexagon Grid.
The geo point (red) activates two grid cells (orange and blue).
The �nal representation is the average of the two grid cells’
embedding vectors.

Figure 3: A visualization of CVNet output on a single layer
of the hexagon grid system.

trip is generated from an idle movement. Conceptually Rt can
be considered as the sum of a sequence of immediate rewards
received at each unit time step while executing the option ot , e.g.,
Rt =

Õkt
i=1 rt+i . We use R̂t to denote the discounted total reward

over the duration of the option ot induced by the discount factor � ,
e.g., R̂t = rt+1 + �rt+2 + ... + �kt�1rt+kt .

Policy, � (o |s) speci�es the probability of taking option o in state
s regardless of the time step t . Executing � in the environment
generates a history of driver trajectories denoted as {�i }i 2H :=
{(si0,oi0, ri1, si1,oi1, ri2, ..., riTi , siTi )}i 2H whereH denotes the in-
dex set of the historical driver trajectories. Associated with the pol-
icy � is the state value functionV � (s) := E{ÕT

i=t+1 �
i�t�1ri |st =

s} which speci�es the value of a state s 2 S under the policy � as
the expected cumulative reward that the driver will gain starting
from s and following � till the end of an episode.

Given the above SMDP and the history trajectories H , our goal
is to estimate the value of the underlying policy. Similar to the
standard MDP, we can write Bellman equations for general policies

������
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State representation

Lipschitz regularization 

Context randomization

Multi-city transfer

► Lipschitz value function
The variation of the function w.r.t. a change in its input is bounded 

by the Lipschitz constant

► Regularize this constant during training
To induce a smoother value estimations and to stabilize the 

nonlinear Bellman update (replacing the target network 

introduced by the original DQN paper [Mnih et al., 2015]). We 
find that this improves learning dynamics and policy convergence.

A Deep Value-network Based Approach for Multi-Driver Order Dispatching KDD ’19, August 4–8, 2019, Anchorage, AK, USA

In what follows, we describe our SMDP formulation in Section 2
and highlight the di�erence between a standard MDP. The Lipschitz
regularized policy evaluation and CVNet structure are detailed in
Section 3, along with the context randomization technique we
use for feature learning that generalizes. Section 4 discuss how
to embed this neural network into a combinatorial problem for
policy improvement in the online multi-agent environment with
thousands of drivers. In Section 5 we discuss the application of
transfer learning in CVNet dispatching system. Experiment results
are presented in Section 6. And �nally Section 7 concludes the
paper.

2 A SEMI-MDP FORMULATION
We model the system as a Markov decision process endowed with
a set of temporally extended actions. Such actions are also known
as options and the corresponding decision problem is known as
a semi-Markov decision process, or SMDP (e.g., see [14]). In this
framework a driver interacts episodically with an environment at
some discrete time scale, t 2 T := {0, 1, 2, ...,T } until the terminal
time stepT is reached. On each time step, t , the driver perceives the
state of the environment, described by the feature vector st 2 S,
and on that basis chooses an option ot 2 Ost that terminates in
st 0 where t 0 = t + kot . As a response, the environment produces a
numerical reward rt+i for each intermediate step, e.g., i = 1, ...,kot .
We denote the expected rewards of the option model by rost :=
E{rt+1 +�rt+2 + ...+�kot �1rt+kot |st = s,ot = o} where 1 � � > 0
is the discount factor for the future reward. In the context of order
dispatching, we highlight the following speci�cs:

State, st consists of the geographical status of the driver lt , the
raw time stamp µt as well as the contextual feature vector given
by �t , i.e., st := (lt , µt ,�t ). The raw time stamp µt re�ects the time
scale in the real world and is independent of the discrete time t
that is de�ned for algorithmic purposes. We use �t to represent
the contextual feature vector at location lt and time µt . We split
contextual features into two categories, the dynamic features �dt
such as real-time characteristics of supplies and demands within the
vicinity of the given spatiotemporal point, and the static features
�st containing static properties such as dayofweek, driver service
statics, holiday indicator, etc. When the discussion is focused on
one particular time step we may ignore the subscript t and directly
write �d and �s .

Option, denoted as ot , represents the transition of the driver to a
particular spatiotemporal status in the future, i.e., ot := lt+kt where
kt = 0, 1, 2, ... is the duration of the transition which �nishes once
the driver reaches the destination. Executing option ot from state
st means starting the transition from origin lt to the destination
speci�ed by ot . This transition can happen due to either a trip
assignment or an idle movement. In the �rst case the option results
in a nonzero reward, while in the latter case an idle option leads
to a zero-reward transition that terminates at the place where the
next trip option is activated. Note that di�erent ot takes di�erent
time steps to �nish and the time extension is often larger than 1,
e.g., kt > 1, which is one of the main di�erences from standard
MDP.

Reward, Rt is the total fee collected from a trip with a driver
transition from st to st 0 by executing option ot . Rt is zero if the

Figure 2: Coarse Coding with Hierarchical Hexagon Grid.
The geo point (red) activates two grid cells (orange and blue).
The �nal representation is the average of the two grid cells’
embedding vectors.

trip is generated from an idle movement. Conceptually Rt can
be considered as the sum of a sequence of immediate rewards
received at each unit time step while executing the option ot , e.g.,
Rt =

Õkt
i=1 rt+i . We use R̂t to denote the discounted total reward

over the duration of the option ot induced by the discount factor � ,
e.g., R̂t = rt+1 + �rt+2 + ... + �kt�1rt+kt .

Policy, � (o |s) speci�es the probability of taking option o in state
s regardless of the time step t . Executing � in the environment
generates a history of driver trajectories denoted as {�i }i 2H :=
{(si0,oi0, ri1, si1,oi1, ri2, ..., riTi , siTi )}i 2H whereH denotes the in-
dex set of the historical driver trajectories. Associated with the pol-
icy � is the state value functionV � (s) := E{ÕT

i=t+1 �
i�t�1ri |st =

s} which speci�es the value of a state s 2 S under the policy � as
the expected cumulative reward that the driver will gain starting
from s and following � till the end of an episode.

V �+1(st ) 
Rt (�kt � 1)
kt (� � 1)

+ �ktV � (st+kt ).

V �+2(st ) 
Rt (�kt � 1)
kt (� � 1)

+ �ktV �+1(st+kt ).

Given the above SMDP and the history trajectories H , our goal
is to estimate the value of the underlying policy. Similar to the
standard MDP, we can write Bellman equations for general policies
and options [14],

V � (s) = E{rt+1 + · · · + �kot �1rt+kot + �
kot V � (st+kot )|st = s}

= E{rost + �kot V � (st+kot )|st = s} (1)

where kot is the duration of the option selected by � at time t and
rost is the corresponding accumulative discounted reward received
through the course of the option.

Discussion. The Bellman equations (1) can be used as update
rules in dynamic-programming-like planning methods for �nding
the value function. The main divergence from the standard MDP
transition is that the update rules need to re�ect the fact that the
temporal extension from state to state spans di�erent time horizons.
As an example, consider one transition from st to st+kt resulted

Table 1: Stats of the training data consisting of one-month
of driver trajectories and contextual features collected from
threeChinese cities. Features are stored in a <key, value> for-
mat with key being the name, time and location.

City Region #Transition #Feature (in rows)
A Western 2.72 ⇥ 107 2.50 ⇥ 107
B Southern 2.98 ⇥ 107 3.74 ⇥ 107
C Northern 1.90 ⇥ 107 1.47 ⇥ 107
D Eastern 5.19 ⇥ 106 3.52 ⇥ 106

(a) (b)

(c) (d)

Figure 4: (a). Temporal patterns in the learned value network
andhow it reacts against the time discount factor� ; (b). Com-
parison of value distributions at a given time between DQN
[17] and CVNet; (c). The change of global Lipschitz during
training under di�erent regularization �; (d). Comparison
of robustness of CVNet w/o Lipschitz Regularization (net1
is trained with � = 0.1 and net2 is trained with � = 0).

structure) is split into two groups based on their adaptivity across
di�erent cities and transfered using a parallel progressive structure
[12]. The idea is to maximize the knowledge transferred from those
adaptive inputs like contextual features and time, while letting tar-
get training focus on the nonadaptive part such as the absolute
GPS locations that are speci�cally tied to the task/city. We include
the speci�c network structure and implementation details in the
supplement material and report in Section 6 experiment results
comparing di�erent transfer methods with CFPT. We �nd that
the performance of CVNet can be further improved through the
e�cient use of knowledge transferred from another city.

6 EXPERIMENTS
6.1 Characteristics of CVNet
We design various experiments to illustrate the robustness and
spatiotemporal e�ect of CVNet. In this set of experiments we train
CVNet on City A with embedding dimension set to 5 and without
the use of contextual features. The results are presented in Figure 4.

Table 2: Results from online AB test.
Relative Improvement

Answer rate (%) Finish rate (%) TDI (%)
City B 0.60 ± 0.057 0.49 ± 0.069 0.73 ± 0.210
City C 1.16 ± 0.062 1.11 ± 0.083 0.93 ± 0.198
City D 1.39 ± 0.077 1.20 ± 0.113 1.65 ± 0.482

Figure 4a plots the change of the mean and standard deviation of
V value, evaluated on a �xed set of sampled locations from City A,
against the time id of the day. Three curves are plotted, each with
a di�erent time discount factor � used during training. We notice
that for all curves the value of CVNet decreases towards zero as the
time approaches the end of the day. This accords with the de�nition
(ref. Section 2) of CVNet. Also note a higher averaged V value as
� increases to one (no discount). In general, a small � induces a
short-sighted strategy, e.g., the earnings over a one-hour period
from now, while a large one encourages long-term behaviors. This
also has an e�ect on the shape of the temporal patterns, as can be
seen in the �gure that for a small � = 0.8 the value curve moves
upwards temporarily during the morning rush hour period while
the curves with large � approach zero in a more monotonic manner.

Figure 4c demonstrates the e�ectiveness of Lipschitz regulariza-
tion with the parameter � introduced in Section 3.3. In Figure 4c
we plot, for di�erent values of �, the change of the bound on global
Lipschitz (4) as training progresses. As expected the Lipschitz value
explodes when there is no regularization � = 0. To see how the
use of Lipschitz regularization improves the robustness and the
training stability of CVNet, we employ a technique called weight
corruption which adds random noises to the weights of the hidden
layers, analogous to, for example, the e�ect of a bad gradient de-
scent step during training. In this case, we corrupt the �rst layer
of CVNet – the embedding matrix �M . We compute the output
distribution against a �x sampled set of locations in City A and
compare the change of this distribution before and after corrup-
tion. As is shown in Figure 4d, the CVNet trained with Lipschitz
regularization � = 0.1 is much more robust against such noises
compared to the one trained without Lipschitz regularization (both
are corrupted with the same noise). As we mentioned, any dramatic
changes in the output distribution like the blue dashed curve shown
in Figure 4d can have a detrimental e�ect on the training due to
the recursive nature of the update rule, e.g., (2).

Finally, we compare the value distribution of CVNet with that
of DQN [17] to show the "built-in" generalization of the cerebellar
embedding. The two methods are trained on the same dataset and
evaluated at a given time step using the same set of popular lati-
tude/longitude pairs from City A. It can be seen from the results
in Figure 4b that the value distribution of DQN not only exhibits a
large variance, but also contains quite a few outliers that are clearly
not correct (negative value). Most of those abnormal values are from
unseen locations that require generalization. On the other hand,
CVNet attains a distribution that is compact and robust against
outliers. With the use of cerebellar embedding, CVNet can general-
ize well to most unseen data points, since they are mapped to tiles
whose embeddings are collaboratively learned during training.

Bad value becomes target 
resulting in more bad values! 
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State representation

Lipschitz regularization

Context randomization

Multi-city transfer

► Historical trajectory augmentation
During training we augment each historical driver trajectory with 

contextual features extracted from the production logging system

► Build noise and variance into training
It is common to notice a ±30 minutes shift of the rush hour peak 

and the real-time statistics. Also the logging system often comes 

with scheduling bias.

► Hierarchical range query
Instead of matching with the exact spatiotemporal status, we 

implement the procedure such that it allows the specification of a 
range for a given query and returns all features within that range 

throughout the history.



LEARNING AND PLANNING

State representation

Lipschitz regularization

Context randomization

Multi-city transfer

► Correlated-feature progressive transfer
Instead of using a fully-connected network which takes all state elements as an entirety during 

training, we build and train a parallel progressive structure with two separate input groups.



EXPERIMENT RESULTS

Training curve
§ Better dynamics and convergence compared to DQN



EXPERIMENT RESULTS

Simulations with real-world data
§ (Top) CVNet achieves an average improvements (across days) from 3% to 8%.

§ (Bottom) Compare transfer methods (from city A to B, C and D) with baselines. 
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EXPERIMENT RESULTS

Online A/B tests
§ We conduct large scale online A/B tests, which demonstrate that the proposed method 

achieves significant improvement on both total driver income and user experience related 
metrics
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